
’s-Hertogenbosch/Hamburg
2016

Dutch Type Library

dtl OTMaster

Typography means more than bringing order to the
passing on of information; it means elevating to the sublime
the mould in which the process of passing on is cast.
 Frank E. Blokland

 Limited user rights
You may never use the software to edit data, including but not limited
to fonts of which you do not own the rights, including but not limited
to intellectual property rights, copyright and rights to trademark, unless
the rightful claimant has given his written and signed consent.

3

dtl otmaster : contents

Introduction 7
About This Manual 8
First Steps into OTMaster 9
File Menu 9
 Open 9
 Close 10
 Close All 10
 Save 10
 Save As … 10
 Save All 10
 Import … 10
 — urw++ Character Layout file [.cha] 10
 — Adobe fdk Feature file [.fea] 10
 — Unicode Variation Sequence file [.uvs] 10
 — woff and woff2 [.woff/.woff2] 11
 Export … 11
 — urw++ Font file [.ufm] 11
 — urw++ Font Metadata file [.ufm] 11
 — urw++ Character Layout file [.cha] 12
 — Adobe Font Metrics file from ‘kern’ table [.afm] 12
 — Adobe fdk Feature file [.fea] 12
 Export woff and woff2 … [.woff/.woff2] 12
 Print … 13
 Preferences 13
 Quit 13
 Messages 13
 Clipboard 13
Inspecting Tables 14
Editing Tables 18
Edit Menu 18
 Cut [and Delete] 18
 Copy 18
 Paste 18
 Grow 18
 Sort 18
 Fixup 18
Viewing Tables 19
View Menu 19
 Nested Tables 19
 Text Dump 20
 hex 21
 dec 21
 best fitting 21

4

dtl otmaster : contents

OpenType Font Tables 22
Selected Notes about OpenType Font Tables 23
 — aat Tables 23
 — cff 24
 — cmap 27
 — colr, cpal 29
 — dsig 30
 — gasp 30
 — glyf, loca, cvt, prep, fpgm 31
 — gdef 32
 — gpos, gsub 33
 — head 36
 — hhea 36
 — hmtx 37
 — kern 38
 — maxp 39
 — name 40
 — os/2 43
 — post 45
ttc and otc Fonts 46
OTMaster’s Toolbox 47
Tools Menu 47
 Font Viewer 47
 Text Viewer 49
 Glyph Viewer 52
 Side by Side Viewer 54
 Embedded Bitmap Viewer 55
 Color Viewer 56
 ‘kern’ Table Viewer 60
 ‘gpos’/‘gsub’ Viewer 62
 Consistency Checker 73
 — Header 73

— Name 76
— Version 76
— Statistics 77
— Unicode Ranges 77
— Codepage Ranges 78
— Languages 80

 Table Comparator 82
 Glyph Copy Tool 83
 Glyph Editor 85
 File 86
 Import ... 86
 Export ... 86
 Print ... 86

5

dtl otmaster : contents

 Save ... 86
 Character Preferences 86
 Messages ... 86
 Clipboard ... 86
 Edit / Selection 86
 Revert to Saved 87
 Undo 87
 Redo 87
 Delete 87
 Cut 87
 Copy 87
 Paste 87
 Paste & Shift 87
 Previous / Next 87
 New 87
 Select All / Deselect All 87
 Select Points 87
 Select Contours 87
 Select Contour Groups 88
 Select Character 88
 Swap Background 88
 View 88
 Tool Bars 88
 Dock Widgets 88
 Display Options 88
 Glyph Set 88
 Reset 88
 Tools 89
 Zoom 89
 Scroll by Hand 89
 Measure 89
 Guidelines and Grid 90
 Scale 90
 Rotate 91
 Affine Transformation 91
 Italization 91
 Mirror and Fold 92
 Hidden Lines 92
 Contouring 93
 t-Disconnector 93
 x-Disconnector 93
 i-Disconnector 94
 Improve 94
 Sense of Rotation 94
 Sequence of Points and Contours 95

6

dtl otmaster : contents

 Merge 95
 Character Hinting 96
 Review Changes 96
 Quick Mode 96
 Digitize 97
 Shift 97
 Shift Smooth 97
 Background Glyph 98
 Closing the Glyph Editor 99
Preferences 100
 — File Options 100
 — User Interface 100
 — Foreground Character 101
 — Background Character 101
 — Autohinting 102
 — Shortcuts 103
Shortcuts 104

7

dtl otmaster : IntrodUctIon

Introduction
dtl OTMaster is a stand-alone application whose interface makes it easy
to review and edit .otf and .ttf fonts’ tables, regardless of whether these
fonts have been generated with IkarusMaster, BezierMaster, DataMaster,
or any other font editor.
 Font editors, like the FontMaster suite, rely on their own internal
data formats for type design and font production. With FontMaster, this
is either an ik or a be file, for Ikarus and Bezier outlines respectively,
along with various data files for naming font and glyphs, for kerning and
definition of typographic layout features. From these data, ready-to-use
binary fonts are compiled as the very last step.
 OTMaster is a tool whose purpose is to inspect and adjust such ready-
to-use binary fonts, irrespective with which font editor they have been
created. Its advantage is that it allows editing of tables in a graphic user
interface. Moreover, it comes with additional tools like a Glyph Editor to
proof, edit and even draw glyph outlines, a ‘kern’ Table Viewer to proof and

Artwork
(working) drawings

DataMaster
converting

TraceMaster
scanning/tracing

IkarusMaster
enhancing

Ikarus
manual digitizing

BezierMaster
drawing/enhancing

ContourMaster
testing/improving

Existing data
starting point

BlendMaster
interpolating

KernMaster
kerning

DataMaster
generating

Fonts
(end point)

Other tools
drawing/generating

OTMaster
checking /adjusting

Fonts
end point

Idea
starting point

8

dtl otmaster : IntrodUctIon

refine the kern table, and a ‘gsub’/‘gpos’ Viewer to visually test (and in case
of GPOS adjust) these OpenType layout tables.
 OTMaster can open, edit and save fonts with sfnt file structure:
cff-based and glyf-based OpenType fonts, TrueType fonts, as well as
ttc (TrueType Collection) fonts and otc (OpenType Collection) fonts.

Because OTMaster allows you to edit a binary font’s tables, which can be
compared to open-heart surgery, it is highly recommended that you know
the OpenType specification, at least as regards the tables whose entries
you plan to adjust. clocal cwww (The current online version is 1.6. Please
note that as of version 1.5, the OS/2 table has been updated to version 4,
and a few nameids have been added to the name table.)

About This Manual
There are a number of links in this document. The first type of link is
‘clocal ’ and links to the OpenType specification which Microsoft kindly
provided so as to accompany this manual. As long as the folder ‘otm
Manual resources’ is located next to the manual’s pdf file, clicking on such
a link will open the according local html page in your web browser, offline.
The second type of link is ‘cwww’ and will open the original online
resource. This may be the preferred choice because these data may be more
up-to-date. And finally there are internal links like ‘cChapter ’, leading from
one chapter to another one.

./OTM Manual resources/OpenType specification/default.htm
http://www.microsoft.com/typography/OTSPEC/default.htm

9

dtl otmaster : FIle menU

First Steps into OTMaster
When launching OTMaster, the main dialog is empty. Since OTMaster is
meant for editing existing fonts, the first step is to open a font.

file menu

Open
This opens an existing font using the standard Open dialog.
 Alternatively, drag & drop a font file’s icon onto OTMaster’s main
dialog. Or drag & drop one or more font files onto the OTMaster icon to
launch OTMaster and open the fonts.

Drag & drop a font
onto OTMaster’s
main window to open it.

Tip: It is highly recommended that
you only edit copies of fonts with
OTMaster, to prevent that you
inadvertedly overwrite a font when
using Save while editing. Either,
make a copy of the font file, and
edit the copy in OTMaster. Or,
Save As … a font immediately after
opening it, by another name.

Opening a font will show the table
overview to the left, and the content of
a selected table to the right.

10

dtl otmaster : FIle menU

 Close
Closes the currently active font. If you have made any changes which have
not been saved yet, a dialog will ask whether you want to save changes now.

Close All
Closes all open fonts. If you have made any changes to a font which has not
been saved yet, you will be asked whether to save recent changes or not.

Save
Saves the currently active font at its current location and thus overwrites
the existing file.

Save As …
Saves the currently active font but allows you to determine a new location
in the standard Save dialog.

Save All
All open fonts will be saved at their current locations.

Import …
This dialog’s options popup currently offers the following file types:

— urw++ Character Layout file [.cha]
Importing a text-based .cha file will allow OTMaster to show this file’s
glyph names in tables’ Comment column. This may be helpful if you
have generated a cid-keyed font from FontMaster and plan to edit it in
OTMaster. Note that importing a .cha file does not have any impact on
the font file or any of its tables.
 OTMaster accepts .cha files that map, per glyph, its glyph index,
Unicode codepoint and glyph name. Please see the column to the right.

— Adobe fdk Feature file [.fea]
This will import –i.e. compile – selected OpenType layout tables from a
.fea file which conforms to Adobe’s feature file syntax as described in the
OpenType Feature File Specification. cwww
 In the dialog which opens next, you may define which of the tables
BASE, GDEF, GPOS, GSUB and name you would like to compile from
the .fea file’s data. Mind that you may define name table records in feature
file syntax.
 Possible import –i.e. compilation – errors are listed, and can be
reviewed, in the cMessages window!

— Unicode Variation Sequence file [.uvs]
Unicode Variation Sequences can be imported from a text-based .uvs file.
Please see the ccmap chapter.

A .cha file as exported by OTMaster
and accepted for import. The header
must read ‘Version 002.00’. Between
tags ‘Starttable’ and ‘Endtable’, a
semicolon-separated table holds the
glyph information. The table’s header
indicates that each glyph is identified
by glyph index (GlyInd) and
optionally is provided with a Unicode
codepoint (uniNum) and a glyph
name (psName).
 The order of columns is arbitrary,
but it is important that the order of
data (in each row) matches the order
determined in the table header.
 OTMaster .cha files differ from
those employed in FontMaster.
OTMaster identifies glyphs by glyph
index (GlyInd) while FontMaster
identifies glyphs by a urw number
(urwNum). To exchange .cha files
between OTMaster and FontMaster,
just replace the keyword ‘GlyInd’
by the keyword ‘urwNum’ (or the
other way round). Please note that
FontMaster .cha files may hold
further information in additional
columns. Keywords are described in
the FontMaster manual.
 Being semicolon-separated, a .cha
file can easily be edited e.g. in Excel:
Add the suffix ‘.csv’ to the .cha file’s
file name and in Excel’s Open dialog
select ‘Text (*.prn; *.txt; *.csv)’ as file
type. After adjusting the table and
saving it, remove the ‘.csv’ suffix from
the file name.

Version 002.000
Starttable
GlyInd;UNINum;PSName
0;;.notdef
1;x0020;space
2;x0021;exclam
3;x0022;quotedbl
4;x0023;numbersign

Endtable

http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html

11

dtl otmaster : FIle menU

— woff / woff2 [.woff /.woff2]
Upon import of a woff and woff2 font, this gets converted to a glyf table
based ttf/otf font and saved immediately. A dialog appears, asking you
where to save the new font.

Export …
Currently, these data may be exported:

— urw++ Font file [.be .ib .ik .ii .qq]
Depending on the input font format, one of the following Ikarus and
FontMaster related formats will be generated for reuse in FontMaster:
Cubic Bezier data, Ikarus data or Quadratic Bezier data, plus variants
of the former two which may include instructions for intelligent scaling
(commonly called ‘hinting’).

— urw++ Font Metadata file [.ufm]
A .ufm file contains the font metadata information which FontMaster
needs for generating fonts, including names and vertical metrics. Detailed
information can be found in the FontMaster manual.

Note: A woff font’s metadata will
be ignored when importing it.
As a consequence, a roundtrip like
woff > ttf > woff will result in
woff metadata getting lost.

Note: Feature files usually identify
glyphs by their glyph names. This
however means that if you ‘transfer’
typographic layout features from
one of your fonts to another one,
glyphs in both fonts need to share
identical names, and all glyphs
referenced in the feature file must be
present in the destination font.
 Please mind that such a ‘transfer’
is not lossless because it involves
interpretation: 1. Export will dump
OpenType layout tables into
an afdko-syntax feature file, and
2. Import will compile OpenType
layout tables from a feature file.
 Also, ‘transferring’ features from
one font to another often is not that
rewarding because most likely each
font has a different glyph set with
different alternates, so that different
feature behavior is required.

12

dtl otmaster : FIle menU

— urw++ Character Layout file [.cha]
A .cha file as exported by OTMaster maps, per glyph, its glyph index,
Unicode codepoint and glyph name.
 An OpenType font’s .cha file is helpful when importing this font in
FontMaster: if you replace ‘GlyInd’ by ‘urwNum’ in the .cha file’s header,
the original glyph indices will serve as urw numbers which identify
glyphs in the FontMaster suite.

— Adobe Font Metrics file from ‘kern’ table [.afm]
This will export an .afm file with the kern table’s kerning – if there is a kern
table in the font.
 An .afm file contains font metrics and basic font metadata. For details
see Adobe’s Font Metrics File Format Specification. cwww

— Adobe fdk feature file [.fea]
This will export selected OpenType layout tables as a .fea file in Adobe’s
feature file syntax. As with the import function, you may choose from
BASE, GDEF, GPOS, GSUB and name. Export means that the tables will
be dumped which involves interpretation as described in the note on the
previous page.
 Please consult Adobe’s OpenType Feature File Specification for details
about the feature file keywords, syntax and examples. cwww

Export woff/woff2 …
Convert to and save a font in Web Open Font Format, woff or woff2.
You may choose one of them in the dialog that will open.

Note: Since an .afm file’s metrics
are supposed to relate to an implicit
upm = 1000, OTMaster will
‘scale’ metrics in case if the font’s
upm is not 1000.

http://www.adobe.com/devnet/font/pdfs/5004.AFM_Spec.pdf
http://www.adobe.com/devnet/opentype/afdko/topic_feature_file_syntax.html

13

Print …
Because it does not make much sense to print data as represented in the
user interface, it is recommended that you switch, in the View menu, to
Text Dump mode and save either the text dump or xml files and print this.

Preferences
Please see the cPreferences chapter.

Quit
This will quit the application. If fonts have been changed but not saved yet,
you will be asked whether you want to save these changes or not.

Messages
This opens the Messages window which collects all status messages as
shown at the bottom of the OTMaster’s main dialog.
You may Clear the panel, Save As Text File … its content,
and search in it with help of Find.

Clipboard
Check the content of the clipboard which you may have filled by cutting or
copying anything. Also see the later cClipboard section.

Note: In the Mac os version of
OTMaster, both Preferences and
Quit are located in the otm menu.

A typical status message.
All messages are collected
in the Messages window.

14

dtl otmaster : InsPectInG taBles

Inspecting Tables
Once a font is opened, OTMaster’s main dialog consists of two areas:

The leftside area presents a table overview with the font’s file name in a
header. If more than one font has been opened, this area consists of as
many segments as there are open fonts. The rightside area shows the
entries of the table which is currently selected in a font’s table overview.
 The table overview usually starts with the Root entry which represents
the font as a whole. Root is the default selection in the table overview, and
accordingly the rightside content area presents this font’s glyph set. Strictly
speaking, this glyph set overview is merely for your convenience – Root
does not represent any specific table. Functionality and options for Root
glyph overview and Font Viewer are identical and are described in the
chapter cFont Viewer.
 Root includes OpenType Font Format which indicates that a font is an
OpenType font. This in turn is populated with the OpenType font’s data
according to sfnt file structure: An Offset Table tells how many tables
this font contains, plus information for binary search. The Table Directory
points out start (offset) and length of every table. These then are followed
by all tables present in the font. (A ttc font would indicate TrueType
Collection Format rather than OpenType Font Format. The overall structure
would differ slightly too. Please consult the chapter cttc Fonts.)
 Offset Table and Table Directory are not supposed to be adjusted
manually. They are read-only and will be updated automatically as soon as
tables are modified, removed or added.

OTMaster’s main window showing
a cff-based OpenType font. If
more than one font is opened, the
table overview is tiled into as many
segments as there are open fonts.
The currently active font’s segment
‘glows’ in the Mac os version:

Tip: Use the Search field to quickly
locate glyphs by glyph index. The
viewer will jump to this glyph and
highlight it.

The term OpenType Font Format
refers to both cff-based and glyf-
based OpenType fonts. The former
store outline data in a CFF table, the
latter store them in a glyf table.

15

dtl otmaster : InsPectInG taBles

 Simple tables include only [table] entries. Selecting [table] table in the
table overview will exhibit the top level of this table in the content area.

The + sign in the Value column indicates that there is more information,
and a click on the + will fold out a nested table whose content is indented:

Since the top level of a table is not very informative, most of the time you
may want to select [table] entries to access the table’s entries directly, ready
to be studied or adjusted:

A table’s top level.

Accessing a table’s entries via its top
level – by unfolding a nested table.

Accessing a table’s entries directly.

16

dtl otmaster : InsPectInG taBles

 Tables of variable length which consists of one or more subtables
like cmap or kern, or multiple entries like name, then [table] table will
include both [table] header and [table] entries. Like Offset Table and Table
Directory, the [table] header is read-only:

The cmap table is a good example for a table which consists of multiple
subtables. This is reflected in the ‘cmap’ entries table content area:

And again the + (in the GlyphMapping column) signals that per subtable
there is some content to be unfolded. Clicking on one of them will reveal
the respective subtable’s mappings of Unicode codepoints (Code) to
glyph indices (gid). In our example, we click the last subtable’s + to see it’s
entries. (Clicking the + again will hide it.)

Header of a table which contains
multiple subtables.

A table’s ‘table’ entries shows the
available subtables in the content
area, ready to be unfolded.

Unfold a subtable by clicking the +
sign and review or edit entries. The
subtable’s entries are indented.

17

dtl otmaster : InsPectInG taBles

 However, some tables like GSUB or GPOS have a rather complex
structure, which makes it hard to keep track of the hierarchy and the level
to which displayed entries belong. To address this, and to help comparing
tables of different fonts, OTMaster can display a table’s or nested table’s
content in a separate window. Just double-click onto a nested table’s header,
like the one selected (and thus colored yellow) in the image below

to create a new window. This way, you can compare multiple font’s tables,
and as many as you like. The only limitation is the size of your screen!

 We have already seen some important OTMaster actions:
1. Click a + sign to show or hide a nested table.
2. Change a table’s entries in usual textboxes.
3. Double-click a nested table’s header to show its content in a new window.
 And one addition:
4. Switch from column to column with b (to right) and shift+b (or B;
to left) and from line to line with u and t keys.

Click onto a nested table’s header …

… to open a new window for this
nested table.

18

dtl otmaster : edIt menU

Editing Tables
The most important functions for removing or adding data are found in the
Edit menu. All of these functions apply to individual tables selected in the
table overview, or table entries selected in the table content area.

edi t menu

Cut [and Delete]
Cuts a selected table or table entry. This will remove the table from the
font, or entry from the table, and keep it in the clipboard – Cut implies the
functionality of Delete.

Copy
Copies a selected table or table entry into the clipboard without removing
it from the font.

Paste
Pastes a table from the clipboard into the currently selected font, or pastes
a table entry from the clipboard into the currently selected table.

Grow
This function does exactly what it says – help growing a table. In tables
of variable length (such as name, cmap, kern) select an entry (like a name
record in the name table) and use Grow to duplicate it. In other tables,
Grow will create a new, empty entry.

Sort
Sorts table entries in tables of variable length. For example, this will sort
name table entries by platformid – encodingid – languageid – nameid, or
sort cmap table entires by Unicode codepoints.

Fixup
Use this to remove duplicate table entries from tables of variable length
(like name, cmap, kern). This is helpful, for example, if you have used
Grow to duplicate an existing name table name record but then find that
you do not need an additional name record.

Note: There is no special Delete
function in OTMaster. However,
Cut serves the same purpose.

19

dtl otmaster : VIeW menU

Viewing Tables
OTMaster offers two modes for viewing tables and two modes of table
value representation representing table values.

vie w menu

Nested Tables
This mode presents each table’s content as a typical dialog. With tables like
head, hhea, OS/2 there are, per entry, its data Type, its Name and finally
the Value in a textbox which may be edited in most cases. Where possible,
there is an additional Comment column with a brief description. This way,
OTMaster is not just a table editor but at the same time provides a built-in
documentation for most of the table data. For example, OTMaster exposes
glyph names in the Comment column which is particularly useful since
tables identify glyphs by mere glyph indices.

 The Nested Tables mode exposes only the top level, indicating the
existence of a nested table by a + sign which, when clicked, will show or
hide a nested table’s entries.
 Double-click a (nested) table’s header to display its content in a
separate window.

While in Nested Tables mode, a right-click into the content area will open
a context menu which offers Text Dump and xml Dump modes (see the
next page for details). Choosing either of them will open a new window.

The Nested Tables mode. Edit table
entries in usual textboxes!

20

dtl otmaster : VIeW menU

Text Dump
Text Dump will present table data as text. Please note that with complex
tables –like glyf, CFF, GSUB or GPOS– this text is rather a summary:

While in Text Dump mode, the xml checkbox at the top of the table
content area allows you to switch to xml mode which will format the
summary in xml style:

Save As Text File … will save a plain or xml text dump – useful for
comparison in a text editor, or making printouts for proofreading.
Find will search the (xml) text dump for a string.

A table’s content in Text Dump mode.

Text dump in xml style. Please note
that this is not compatible with ttx’s
xml-style dump!

21

dtl otmaster : VIeW menU

hex
Hex shows values as hexadecimal numbers:

dec
Dec shows values as decimal numbers:

best fitting
Best fitting will choose the most appropriate representation of values,
which is hexadecimal or decimal. This is the default.

This example is taken from the OS/2
table entries.

You will notice that with best fitting,
which is the default, some values
are decimal while others are hexa-
decimal – this choice is built into
OTMaster.

22

dtl otmaster : ot taBles

OpenType Font Tables
You are expected to know the OpenType specification, rudimentarily at
least, and at least as regards the tables whose data you intend to adjust. It
is not the task of this manual to reproduce or rephrase them here, though
this cannot be avoided at times. clocal cwww What you will find in this
chapter though is a brief summary of an OpenType font’s structure, a list of
common tables, with a few additional notes about things to consider: first,
to make sure that data across tables is consistent, and second, to provide
some OTMaster tricks for adjusting and extending tables.
 As indicated in the cInspecting Tables chapter, the structure of an
OpenType font is quite simple. It starts with header information. First, an
Offset Table whose sfnt version indicates whether the font is glyf-based
(0x001000), cff-based (string ‘otto’) or a TrueType Collection (string
‘ttcf ’), and the number of tables in case of a tt/cff-based OpenType font.
Second, a Table Directory which points out where each table starts and how
long it is. Header information are directly followed by the tables.
 The OpenType specification provide the following list of tables:

 1. Required tables
 cmap character to glyph mapping
 head font header
 hhea horizontal header
 hmtx horizontal metrics
 maxp maximum profile
 name naming table
 OS/2 os/2 and Windows specific metrics
 post PostScript information

 2. Tables in glyf-based OpenType fonts
 cvt control value table
 fpgm font program
 glyf glyph data
 loca index to location*
 prep cvt program

 3. Tables in cff-based OpenType fonts
 CFF PostScript font program (Compact Font Format)†
 VORG vertical origin

 4. Tables for bitmaps
 EBDT embedded bitmap data
 EBLC embedded bitmap location data
 EBSC embedded bitmap scaling data

Info: The OpenType specification.
clocal cwww Especially see
The OpenType Font File clocal
cwww and Recommendations
for OpenType Fonts clocal
cwww which comes with addition-
al information and clarifications.

An OpenType font’s data structure
(simplified):

 * Location means: location of
glyphs’ data inside of the glyf table.
Effectively, the loca is the glyf table’s
‘external’ header or directory.

 † The CFF table actually is a font in
its own right, holding not only outline
data, but also glyph- and font-level
hinting information, font names and
more.

Table Directory
table name, start, length
table name, start, length
table name, start, length

Table

Offset Table
incl. version (tt or cff)
and number of tables

Table

Table

./OTM Manual resources/OpenType specification/default.htm
http://www.microsoft.com/typography/OTSPEC/default.htm
./OTM Manual resources/OpenType specification/default.htm
http://www.microsoft.com/typography/OTSPEC/default.htm
./OTM Manual resources/OpenType specification/otff.htm
http://www.microsoft.com/typography/otspec/otff.htm
./OTM Manual resources/OpenType specification/recom.htm
http://www.microsoft.com/typography/otspec/recom.htm

23

dtl otmaster : ot taBles

 5. Typographic layout tables
 BASE baseline data
 GDEF glyph definition data
 GPOS glyph positioning data
 GSUB glyph substitution data
 JSTF justification data

 6. Other tables
 DSIG digital signature
 gasp grid-fitting and scan-conversion procedure
 hdmx horizontal device metrics
 kern kerning
 LTSH linear threshold data
 PCLT pcl5 data
 VDMX vertical device metrics
 vhea vertical metrics header
 vmtx vertical metrics

OpenType fonts’ sfnt structure makes it easy to add tables which are not
standardized by the OpenType specifications. The only requirement is that
their names do not collide with standard table’s names.
 For example, Microsoft’s volt –an application for defining
typographic layout behavior visually– adds a table called TSIV to the font.
This holds the volt project data. The TSIV data is removed from the font
as soon as you ‘ship’ a font.

Selected Notes about OpenType Font Tables
Below, you will find some notes about individual OpenType font tables.
These are in no way official recommendations but rather point out a few
things to consider. You are strongly advised to compare with the original
OpenType specification – links are provided whereever possible.
 Tables not yet supported by OTMaster do appear in the table directory
and table overview, but no content is shown in the table content area.
When saving a font, these unsupported tables will be written back to the
font in their original form.

— aat Tables
aat (Apple Advanced Typography) tables are not supported.

24

dtl otmaster : ot taBles

— cff
An OpenType font’s Compact Font Format table is a complete font. It
comes with outline data, but also with font names and (unless cid-keyed)
glyph names, font- and glyph-wide hinting instructions, and more.

1. ‘CFF’ top dictionary contains a CFF font’s meta-information:

1.1 CFF and name table: The CFF table’s Name index –found in the
‘CFF’ top dictionary as FontName– must be identical to name table entries
with nameid 6 (PostScript name, both Microsoft platform and Macintosh
platform) and nameid 4 (Full name, Microsoft platform). If your font is a
cff-based OpenType font and you intend to change these names, then you
need to change the ‘CFF’ top dictionary’s FontName at first and only then
can adjust the name table entries for PostScript name and Full name.
 Other font name entries in the ‘CFF’ top dictionary may reflect the
respective name table entries. Weight refers to weight only, not to style!

1.2 CFF and post table: Both the CFF and the post table have entries for
underline position and thickness. CFF has UnderlinePosition and
UnderlineThickness. post has underlinePosition and underline-
Thickness. While both tables’ underline thickness entries share the same
value, those for underline position differ. The CFF table’s Underline-
Position is measured from the vertical center of the underline outline’s
height, or thickness. The post table’ underlinePosition is measured
from its highest point. Their relation is:
 CFF.UnderlinePosition
 = post.underlinePosition - (post.underlineThickness /2)
Take care that ItalicAngle is identical with the post table’s italicAngle
and matches the hhea table’s caretSlopeRise and caretSlopeRun. More
in the cConsistency Checker chapter.

Info: The CFF table. clocal cwww
Adobe’s The Compact Font
Format Specification, #5176.
clocal cwww Adobe’s The
Type 2 Charstring Format #5177.
clocal cwww

Note: Adobe discourages the use of
xuid and Uniqueid in fonts that are
not cjk fonts. cwww

The ‘CFF’ top dictionary. The cff
table’s Name index shows up as
FontName in this list.

./OTM Manual resources/OpenType specification/cff.htm
http://www.microsoft.com/typography/otspec/cff.htm
./OTM Manual resources/OpenType specification/5176.CFF.pdf
http://partners.adobe.com/public/developer/en/font/5176.CFF.pdf
./OTM Manual resources/OpenType specification/5177.Type2.pdf
http://partners.adobe.com/public/developer/en/font/5177.Type2.pdf
http://typophile.com/node/18749#comment-114051

25

dtl otmaster : ot taBles

1.3 Font-wide hinting information –BlueValues, OtherBlues, etc.– are
found in the ‘CFF’ top dictionary’s Private nested table:

2. ‘CFF’ glyph list holds the glyph names as found in the CFF table’s
CharStrings index. Additional columns present, per glyph,
hAdv, the horizontal advance width,
left, the leftside bearing which is equal to xMin (smallest horizontal
extension of the glyph),
bottom, the yMin (smallest vertical extension of the glyph),
right, the xMax (largest horizontal extension of the glyph),
top, the yMax (largest vertical extension of the glyph),
and Comment with Adobe’s standard glyph names for these glyphs.

The Private dictionary which is
accessed by way of the ‘CFF’ top
dictionary – here displayed in a
separate window.

The ‘CFF’ glyph list. This is where
you may change glyph names in cff-
based OpenType fonts. in glyf-based
OpenType fonts, glyph names are
found in the post table – unless this is
a version 3 post table.

26

dtl otmaster : ot taBles

3. ‘CFF’ encoding vector links any of the characters covered in Adobe’s
Standard or Expert Encoding to glyph indices. This is read-only.

Unlike the glyf table, the CFF table does not show outline coordinates. For
editing outlines you may prefer to use the cGlyph Editor.

The ‘CFF’ encoding vector.

27

dtl otmaster : ot taBles

— cmap
The Character To Glyph Mapping table maps input Unicode codepoints
(Code) to glyphs which are identi fied by glyph index (gid). It consists
of one or more subtables. A standard OpenType font usually contains three
of them (platformid – encodingid – format):
 0 – 3 – 4 (no platform – Unicode – format 4)
 1 – 0 – [6] (Macintosh – Roman – format 6 or other)
 3 – 1 – 4 (Microsoft – Unicode – format 4)
The last one is required for Windows. The second one is or may become
increasingly obsolete.
 To address supplementary Unicode codepoints beyond bmp, a font
also needs a format 12 subtable (platformid – encodingid – format):
 3 – 10 – 12 (Microsoft – Unicode ucs-4 – format 12)
Note that this must be present in addition to the format 4 subtable rather
than instead of it. This too is required for Windows.

To add mapping information to a cmap subtable, click the + to access its
entries, select one of them, choose Edit > Grow to duplicate the selected
entry, and adjust Unicode codepoint and glyph index:

It is possible to create a new subtables of a different format by
1. selecting an existing subtable,
2. duplicating it with Grow,
3. changing the new subtable’s format and possibly platformid and
encodingid too.

Info: The cmap table. clocal
cwww

Note: You need to repeat this for
every subtable if you want the
according mappings to be covered
by all of them.

cmap table with three subtables, the
last of which is unfolded.

Duplicating a cmap subtable.

./OTM Manual resources/OpenType specification/cmap.htm
http://www.microsoft.com/typography/otspec/cmap.htm

28

dtl otmaster : ot taBles

OTMaster supports Unicode Variation Sequences. With the method
described above it is possible to add an according subtable. For this,
platformid – encodingid – format need to be 0 – 5 – 14.

A Variation Sequence consists of a codepoint (Code) followed by a
variation selector (varSelector). If this pair is matched in an input string,
the glyph mapped to this codepoint will be replaced by another glyph
referenced by gid. This can be compared to a typographic layout feature,
yet it is the input string itself which initiates the replacement by a variant
glyph. When creating such a subtable in OTMaster, glyphs’ variation
selectors are set to zero by default and need to be adjusted manually:

Further information about Ideographic Variation Sequences can be found
in Ken Lunde’s ivs Support · The Current Status and the Next Steps. cwww
Also see the Unicode Consortium’s Ideographic Variation Database. cwww

Note: See the cmap table specifica-
tion, ‘Format 14: Unicode Variation
Sequence’. clocal cwww

Creating a subtable for Unicode
Variation Sequences. Change
the duplicate subtable’s format,
platformid and encodingid.

Adjust the glyph’s variation selector
(varSelector).

Tip: Use u and t keys to flip
through all mapping entries quickly,
and b (to right) and shift+b
(or B; to left) to jump from column
to column.

http://blogs.adobe.com/CCJKType/2010/02/ivs_support_the_current_status.html
http://www.unicode.org/ivd
./OTM Manual resources/OpenType specification/cmap.htm
http://www.microsoft.com/typography/otspec/cmap.htm

29

dtl otmaster : ot taBles

— colr
— cpal

The COLR table maps (usually encoded) base glyphs to color-specific
glyphs and color definitions. The CPAL table holds these color definitions.

The COLR table maps base glyphs, identified by gid, to color-specific
glyphs, also identified by gid, and references to color definitions, by
paletteIndex.

The CPAL table in turn provides the colorRecords. A record’s # column
corresponds to the paletteIndex that the COLR table refers to. There
may be multiple color palettes in the CPAL table, each of which contains
a full set of colorRecords in a nested list. A color is defined by red,
green, blue and alpha values.

A special paletteIndex value of 0xffff indicates that the user-defined
foreground color is to be used.

Both tables can be edited the usual way, as described in the previous section
about the cmap table.

Info: The COLR table. clocal
cwww
The CPAL table. clocal cwww

The COLR table with one nested
gid to paletteIndex sublist unfolded.

The CPAL table with a nested
sublist containing the first palette’s
colorRecords.

Note: Other color tables are
— cbdt
— cblc
as supported by Google,
— sbix
as supported by Apple, and
— svg
as supported by Adobe.

http://www.microsoft.com/typography/otspec/COLR.htm
http://www.microsoft.com/typography/otspec/CPAL.htm

30

dtl otmaster : ot taBles

— dsig
If the Digital Signature table exists in a font which you are about to edit in
OTMaster you may want to delete it with Edit > Cut. Editing the font
would invalidate this table anyway and indicate that this font is not in the
state in which it was originally delivered.

— gasp
The Grid-Fitting And Scan-Conversion Procedure table determines which
kind of rasterization is preferred for specific ppem size ranges.

The upper limit of a range is its maximum ppem size (rangeGaspppem),
the lower limit is 0 or the previous range’s maximum ppem size +1. The
last record must have a rangeGaspppem of 0xFFFF or 65 535. Four kinds
of preferred rasterization (rangeGaspBehavior) have been defined:
 grayscale (0x0002)
 gridfit (0x0001)
 grayscale & gridfit (0x0003)
 none of them (0x0000)
There are three additional values which address ClearType and are
considered to be independent of the above ones:
 symmetric gritfit (0x0004)
 symmetric smoothing (0x0008)
 symmetric smoothing & symmetric gritfit (0x000C)
Please note that in the head table, bit 13 of the flags entry indicates whether
or not a font is optimized for ClearType.

For example, to adjust the above gasp table such that it will encourage
grayscaling for all ppem sizes, select the first two records one by one and
Edit > Cut them. Finally, change rangeGaspBehavior to ‘0x0002’.

Info: The DSIG table. clocal
cwww

Note: It is assumed that you are
either editing your own font or have
permission to do so!

Info: The gasp table. clocal
cwww

Selecting the last record of the
gasp table.

The gasp table after removing
the first two records and adjusting
rangeGaspBehavior.

./OTM Manual resources/OpenType specification/dsig.htm
http://www.microsoft.com/typography/otspec/dsig.htm
./OTM Manual resources/OpenType specification/gasp.htm
http://www.microsoft.com/typography/otspec/gasp.htm

31

dtl otmaster : ot taBles

— glyf
— loca

The glyf table contains tt outline information as well as glyph-level
instructions, i.e. hinting information. This table is read-only in OTMaster,
so we do not go into details here. Try the cGlyph Editor for editing glyph
outlines.

The loca table (not shown here) can be considered as the glyf table’s
directory or header. Per every glyph index, the loca table points out (by way
of an ‘offset’) where this glyph’s data starts in the glyf table.
 Just like tables’ header information are read-only, the loca table is read-
only and will be updated automatically by OTMaster.

— cvt
— prep
— fpgm

With glyf-based OpenType fonts (quadratic Bezier curve description in
a glyf table), the Control Value Table, Control Value Program and Font
Program hold font-level instructions. OTMaster indicates their meaning in
the Comment column.

For details about the above tables and TrueType instructions please see
Apple’s TrueType specification. cwww

Info: The glyf table. clocal cwww
The loca table. clocal cwww

http://developer.apple.com/textfonts/TTRefMan/
./OTM Manual resources/OpenType specification/glyf.htm
http://www.microsoft.com/typography/otspec/glyf.htm
./OTM Manual resources/OpenType specification/loca.htm
http://www.microsoft.com/typography/otspec/loca.htm

32

dtl otmaster : ot taBles

— gdef
The Glyph Definition table belongs to the typographic layout tables and
provides additional information to which GSUB and GDEF may refer.

Curently, OTMaster only supports glyph class definitions which are
located in ‘GDEF’ glyph classes. Each glyph, identified by glyph index (gid),
is associated with no or one of these classes, identified by ClassValue:
 1. base glyphs
 2. ligature glyphs
 3. (combining) mark glyphs
 4. glyph components

Info: The GDEF table. clocal
cwww Also see the OpenType
Layout Common Table Formats
document. clocal cwww

./OTM Manual resources/OpenType specification/gdef.htm
http://www.microsoft.com/typography/otspec/gdef.htm
./OTM Manual resources/OpenType specification/chapter2.htm
http://www.microsoft.com/typography/otspec/chapter2.htm

33

dtl otmaster : ot taBles

— gpos
— gsub

Glyph Positioning and the Glyph Substitution tables start with three lists:
script list, language list, and feature list.

The script list sums up all scripts explicitly addressed by the layout table.
These are scripts – or writing systems – like ‘latn’ for Latin or ‘cyrl’ for
Cyrillic.
 Per each script as found in the ScriptTag column, there is a list of
languages explicitly addressed by the layout table, plus a ‘default’ language
for which there is a special place in the data structure. (In case that a layout
application cannot find a match for the selected language – e.g. by way
of the spelling dictionary in Adobe InDesign– in the font’s layout table,
it would fall back to this ‘default’ language.) The former is accessed by
clicking the + in the LangSysList column, the latter by clicking the + in
the DefaultLangSys column. In the example above, the ‘latn’ script’s
languages are folded out.
 Per each language there is a list of features associated with it. This
is unfolded by clicking the + in the according language’s FeatureIndex
column. In the example above, there is one ‘kern’ feature associated with
the Turkish language or ‘trk’ – to know what the actual feature behavior
of ‘kern’ is for Turkish, we memorize feature Index 10 and switch to the
feature list.

Info: The GPOS table. clocal
cwww The GSUB table. clocal
cwww Also see the OpenType
Layout Common Table Formats
document. clocal cwww

The script list, with unfolded language
list for the ‘latn’ script.

./OTM Manual resources/OpenType specification/gpos.htm
http://www.microsoft.com/typography/otspec/gpos.htm
./OTM Manual resources/OpenType specification/gsub.htm
http://www.microsoft.com/typography/otspec/gsub.htm
./OTM Manual resources/OpenType specification/chapter2.htm
http://www.microsoft.com/typography/otspec/chapter2.htm

34

dtl otmaster : ot taBles

The feature list, for each feature to which a script/language combination
refers, points to one or more lookups via LookupIndex. These lookups
define the actual substitution and positioning behavior for this feature.
Going back to our example, we remember feature index number 10 (the
column) and in this feature’s LookupIndex column click the + which
opens a nested table pointing to the relevant lookups’ indices.

The lookup list, finally, holds a list of all lookups. These are presented as
nested tables, and you can start unfolding nested tables which strictly
represent the lookups’ structure. In our example above, there is but a single
lookup for kerning, of LookupType 2. We click the + in the SubTable
column and get to know about the single subtable’s format which is
PosFormat 1. Clicking the + in the Positioning column unfolds the single
subtable’s header information. Clicking the + in the gidPairValues row
finally presents the kerning pairs and values.

The Feature list.

The Lookup list.

Note: The structure of nested tables
depends on lookup types and
subtable formats – this example
really is just that: an example.

35

dtl otmaster : ot taBles

With OTMaster you may view and edit user interface names associated
with Stylistic Set 1–20 (‘ss01’–‘ss20’) and Character Variant 1–99
(‘cv01’– ‘cv99’) features.
 To examine the name of the ‘ss09’ feature of a given font, choose the
‘GSUB’ feature list from the table overview. Scroll down to ‘ss09’ in the
content area – there are multiple entries for ‘ss09’, one per each script/
language combination. If there is a + in the FeatureParams column,
then this feature is associated with an interface name. Click the + to reveal
Version and uiNameid. The latter is nothing else but a pointer to a
nameid associated with one or more name table records.

So keep this nameid in mind and choose ‘name’ records from the table
overview. The content area shows, for nameid 256, that this Stylistic Set
feature is called ‘Arrows 2’. Please note that there may be multiple
name records with nameid 256. As usual, there may be different strings
for different platforms, encodings, languages.

Locating uiNameid in the ‘GSUB’
feature list.

The string associated with this feature
found in the name table.

36

dtl otmaster : ot taBles

— head
The Font Header table holds the most important value – the font’s
unitsPerEm or upm, i.e. the number of units into which the em-square is
divided. All of the fonts metrics relate to it.

macStyle relates to the OS/2 table’s fsSelection (and usWeightClass
and usWidthClass) and name table records with nameid 2.

— hhea
Many Horizontal Header table entries are not meant to be edited manually.

caretSlopeRise and caretSlopeRun should be in tune with the post
table’s italicAngle value and, if this is a cff-based OpenType font, also
with the ‘CFF’ top dictionary’s ItalicAngle.

ascender, descender, lineGap relate to OS/2 table’s sTypoAscender,
sTypoDescender, sTypoLineGap, usWinAscent, usWinDescent.

Info: The head table. clocal
cwww

head table entries.

Info: The hhea table. clocal
cwww

hhea table entries.

Note: For both italic/slant inform-
ation and vertical font metrics
see the cConsistency Checker
chapter.

./OTM Manual resources/OpenType specification/head.htm
http://www.microsoft.com/typography/otspec/head.htm
./OTM Manual resources/OpenType specification/hhea.htm
http://www.microsoft.com/typography/otspec/hhea.htm

37

dtl otmaster : ot taBles

— hmtx
The Horizontal Metrics table contains, per glyph, advanceWidth and
leftSideBearing.

In cff-based OpenType fonts, hmtx table entries are read-only and cannot
be edited.

Info: The hmtx table. clocal
cwww

The basic glyph metrics, advance
width and left sidebearing, listed in the
hmtx table.

./OTM Manual resources/OpenType specification/hmtx.htm
http://www.microsoft.com/typography/otspec/hmtx.htm

38

dtl otmaster : ot taBles

— kern
Theoretically speaking, the Kerning table is a remainder of the (pre-
OpenType) TrueType format. Practically speaking, it is still required
because many applications cannot read OpenType font’s layout tables.

With OpenType fonts, kerning information better be provided by way of a
kern feature in the GPOS table. This can deal with ‘normal’ left-to-right as
well as right-to-left and vertical kerning. The specification even says –albeit
strangely worded– that cff-based OpenType fonts are not supposed to
have a kern table at all.
 Since some applications, even most popular ones, do not support
typographic layout features (GSUB, GPOS etc.), unfortunately there is no
way around adding a kern table to provide them with kerning information.
 However, adding a kern table brings some inconveniences with it.
Fonts are getting bigger and in turn require more kerning pairs. For a kern
table to be recognized by Windows, it must contain a single subtable of
format 0. Since the format 0 subtable’s value which indicates the number
of kerning pairs can be 65 535 at maximum (not to mention that the value
which indicates the subtable’s length is similarly restricted),* the number
of kerning pairs that may go into such a subtable is limited – not enough to
cover all pairs which would result from expanding class-based kerning as
found in an OpenType font’s GPOS ‘kern’ feature.

More about kern table editing in the c‘kern’ Table Viewer chapter.

Info: The kern table. clocal
cwww

 * A detailed description has been
posted to the OpenType List in 2008
by Ascender Corp.’s Joshua Hadley.

./OTM Manual resources/OpenType specification/kern.htm
http://www.microsoft.com/typography/otspec/kern.htm

39

dtl otmaster : ot taBles

— maxp
With cff-based OpenType fonts (cubic Bezier curve description in a
CFF table), a Maximum Profile table of version 0.5 merely tells about the
number of glyphs (numGlyphs) in a font.

With glyf-based OpenType fonts (quadratic Bezier curve description
in a glyf table), a Maximum Profile table of version 1.0 holds additional
information about glyf, cvt, prep and fpgm tables.

More details about these information and to which tables they relate can be
found in Apple’s TrueType specification. cwww

Info: The maxp table. clocal
cwww

The version 0.5 maxp table and its
two entries.

The version 1.0 maxp table and its
additional entries.

http://developer.apple.com/textfonts/TTRefMan/
./OTM Manual resources/OpenType specification/maxp.htm
http://www.microsoft.com/typography/otspec/maxp.htm

40

dtl otmaster : ot taBles

— name
The Naming table is essential for a font to be identified.

You may remove, edit or add new name entries. To add a name entry,
select an existing one and click Edit > Grow to duplicate it. Adjust the
platformid, encodingid, languageid, nameid and the name tag.
Once you have finished adding name entries, click Edit > Sort which
will reorder all name entries.
 Pre-defined nameids are, according to the name table specification:

0. Copyright notice.
1. Family name. Each family, i.e. a collection of fonts which share the same
Family name, is supposed to consist of no more than these four styles:
‘Regular’, ‘Italic’, ‘Bold’, ‘Bold Italic’, defined in the Subfamily name (2).
2. Subfamily (or Style) name. For each family – defined by Family name (1)–
this may be one of ‘Regular’, ‘Italic’, ‘Bold’, ‘Bold Italic’. The OS/2 table’s
fsSelection clocal cwww and the head table’s macStyle clocal cwww
need to reflect the style defined by Subfamily name.
3. Unique Font Identifier. This could be a combination of Designer (9) or
Manufacturer (8) name, Postscript name (6) and year, separated by ‘;’.
4. Full name. A combination of Preferred Family name (16) and Preferred
Subfamily name (17) if present or –according to the specification– Family
name (1) and Subfamily name (2). If the Microsoft platform Subfamily name
(2) is ‘Regular’, the Full name should match this platform’s Family name (1).
5. Version string. This should begin with ‘Version [major].[minor]’ whereby
[major] and [minor] may be any number smaller than 65 535. A Version
string could look like ‘Version 1.500’. Additional information may be added
and should be separated by ‘;’.

Info: The name table. clocal
cwww

The name table entries. Thanks to the
Comment column, the numeric
platformid, encodingid, languageid
and nameid are self-explaining.

Tip: For details see the name table
specification as well as the cCon-
sistency Checker. Additional
information can be found in the
Makeotf User Guide which is
part of the afdko download,
especially the chapter New os/2
Bits. clocal cwww Additional
name table entries and the version 4
OS/2 table’s fsSelection bits 7–9
relate to wpf’s font selection model.
See Microsoft’s paper wpf Font
Selection Model cwww for
detailed information about wws-
conformant families.

Note: The PostScript name (6)
description mentions an additional
condition which the Full name (4)
needs to meet in cff-based Open-
Type fonts.

./OTM Manual resources/OpenType specification/os2.htm
http://www.microsoft.com/typography/otspec/os2.htm
./OTM Manual resources/OpenType specification/head.htm
http://www.microsoft.com/typography/otspec/head.htm
./OTM Manual resources/OpenType specification/name.htm
http://www.microsoft.com/typography/otspec/name.htm
./OTM Manual resources/OpenType specification/os2.htm
http://www.microsoft.com/typography/otspec/os2.htm
http://blogs.msdn.com/text/archive/2007/04/23/wpf-font-selection-model.aspx

41

dtl otmaster : ot taBles

6. PostScript name. This is required for a PostScript interpreter to identify
a PostScript language font corresponding to this OpenType font. There
must be a record with nameid 6 for both (platformid – encodingid –
languageid):
 1 – 0 – 0 (Macintosh)
 3 – 1 – 1033 (Microsoft)
Both strings must be identical when translated to ascii and not longer than
63 characters. Characters are restricted to ascii codes 33–126 excluding
any of ‘[](){}<>/%’. Usually built like the Full name (4) – but without any
spaces and with with a ‘-’ between family and subfamily part of the string.
 There is an additional requirement for cff-based OpenType fonts:
The PostScript name (6) for both Microsoft platform and Macintosh
platform, the Full name (4) for the Microsoft platform as well as the CFF
Name index must be identical. OTMaster displays the CFF Name index
as FontName inside of the ‘CFF’ top dictionary, thereby deviating a bit
from the CFF table’s structure.
7. Trademark notice.
8. Manufacturer name.
9. Designer name.
10. Description of the typeface.
11. Vendor url. This should include ‘http://’, ‘ftp://’ etc.
12. Designer url. This should include ‘http://’, ‘ftp://’ etc.
13. License description. This is expected to be a summary of the terms rather
than, as the specification puts it, ‘legalese’.
14. License Info url. A link to the full license text. This should include
‘http://’, ‘ftp://’ etc.
15. Reserved, set to zero.
16. Preferred Family name. If a family consists of more, or other, styles than
‘Regular’, ‘Italic’, ‘Bold’, ‘Bold Italic’, you may define a Preferred Family
name for which there are no restrictions as to the number of styles.
17. Preferred Subfamily (or Style) name. This relates to the Preferred Family
name (16). If the OS/2 table’s version is 4 and if a family’s Preferred styles
are wws-conformant (i.e. are distinguished by the categories weight, width
and slope alone), you may set the OS/2 table’s fsSelection bit 8 to 1 which
will signal wws-conformancy. If a family’s Preferred styles are not
wws-conformant, set bit 8 to 0 and provide wws-conformant wws Family
name (21) and wws Subfamily name (22).
18. Compatible Full name. Macintosh platform only. If the Full name (4)
turns out to be too long, i.e. longer than 27 (or more generously: 31)
characters, you may either abbreviate the Macintosh platform Full name (4)
or otherwise provide an additional abbreviated Compatible Full name. If
the Compatible Full name is present and the Subfamily name (2) is ‘Regular’,
the Compatible Full name should match the Family name (1).
19. Sample text.
20. PostScript cid findfont name. Please see the name table specification.

Note: If you set the OS/2 table’s
version to 4, then all the fsSelection
bits 7 – 9 need to be set to 0 or 1
consciously because starting with
this table version, these bit settings
bear a special meaning.

42

dtl otmaster : ot taBles

21. wws Family name. A wws-conformant family’s styles must address no
other categories than weight, width and slope. If this name is provided, the
OS/2 table’s fsSelection bit 8 should be set to 0.
22. wws Subfamily (or Style) name. If this name is provided, the OS/2 table’s
fsSelection bit 8 should be set to 0. The OS/2 table’s usWeightClass,
usWidthClass as well as fsSelection bits 0 (italic) and 9 (oblique) should
reflect the wws Subfamily name.

The name table specification clocal cwww comes with an example
string for each nameid, so that you are encouraged to read this documents
carefully.

Some OpenType layout features like Stylistic Set and Character Variant
features can be associated with strings that applications may display in
their user interfaces. These strings are located in the name table and
referenced from the GSUB table. Please see the cGPOS/GSUB section
for an example.

Note: A wws-conformant font may
have both Italic and Oblique
styles! See Microsoft’s paper wpf
Font Selection Model. cwww

Note: If you set the OS/2 table’s
version to 4, then all the fsSelection
bits 7 – 9 need to be set to 0 or 1
consciously because starting with
this table-version, these bits bear a
special meaning.

./OTM Manual resources/OpenType specification/name.htm
http://www.microsoft.com/typography/otspec/name.htm
http://blogs.msdn.com/text/archive/2007/04/23/wpf-font-selection-model.aspx

43

dtl otmaster : ot taBles

— os/2
Most font-wide information are located in the OS/2 table. The content
area’s Comment column provides a description for every entry.

usWeightClass, usWidthClass and fsSelection relate to the name table
records with nameids 1/2, 16/17, 21/22, while fsSelection also relates to the
head table’s macStyle. Please see the cname table section.

fsType defines embedding licensing rights for this font. May it be
embedded into a document? What, then, is allowed with such a document?

sTypoAscender, sTypoDescender, sTypoLineGap, usWinAscent,
usWinDescent –and the hhea table’s ascender, descender, lineGap –
are dealt with in the cConsistency Checker chapter.

Info: The OS/2 table. clocal
cwww

./OTM Manual resources/OpenType specification/os2.htm
http://www.microsoft.com/typography/otspec/os2.htm

44

dtl otmaster : ot taBles

If you set the OS/2 table’s version to 4, you need to set fsSelection bits
7 – 9 to 0 or 1 consciously because starting with this table version, each of
these bits carries a special meaning:
 7. To tell applications that the default line-to-line distance should be
calculated from sTypoAscender/sTypoDescender/sTypoLineGap,
set this bit to 1. Otherwise, set this bit to 0. See the cConsistency Checker
chapter for more information about setting vertical font metrics.
 8. If this family is wws-conformant (the name table Preferred Subfamily
names (17) address no other categories than weight, width and slope),
set this bit to 1. If this is not so (e.g. if Preferred Subfamily names (17) refer to
optical size or even something like ‘Outline’), set this bit to 0 but add
wws-conformant wws Family name (21) and wws Subfamily name (22).
 9. If this font’s slope can be described as ‘Oblique’ rather than
‘Italic’ –wpf distinguishes between ‘Oblique’ and ‘Italic’–, set this bit to 1.
Otherwise, set this bit to 0. (If the font is ‘Italic’, set bit 0 to 1 as usual.)

If you set the OS/2 table’s version to 5, you will notice two additional
entries. These allow to create optical size specific fonts and define
the intended size range for which a font was designed. Please note that
these entries interact with name table records. Microsoft, who came
up with this, has not published a specification about the details yet.

usLowerPointSize is the lower value of the size range at which the
font is to be used while usUpperPointSize is the upper value of the
size range at which the font is to be used. One font’s usLowerPointSize
of one optical size is expected to be identical to another font’s
usUpperPointSize since the latter is meant to be exclusive (up to,
but not including, the stated point size).
 One unit corresponds to 0.05 pt, or 1 twip.
 For font families that do not feature special designs for separate point
size ranges, usLowerPointSize should be 0 and usUpperPointSize
should be 65535 which is an infinitely large size.

Tip: See Microsoft’s paper wpf
Font Selection Model, especially
pp. 4–6 and the ‘Guidelines for
font manufacturers’ on pp. 17–18.
cwww

Info: Preliminary information on
these new values by John Hudson.
cwww

Note: usLowerPointSize nad
usUpperPointSize unit is a ‘twip’
which equals 0.05 pt.

http://blogs.msdn.com/text/archive/2007/04/23/wpf-font-selection-model.aspx
http://www.typedrawers.com/discussion/470/new-microsoft-size-specific-design-selection-mechanism

45

— post
The post table holds information for printing fonts on PostScript printers.
glyf-based OpenType fonts store glyph names in a post table of version 2.0.
cff-based OpenType fonts, unless they are cid-keyed, store glyph names
in the CFF table. In this case, the post table has format 3.0 which signifies an
abbreviated version of this table that omits glyph name information.
It is possible for glyf-based OpenType fonts, too, to make use of a post table
of version 3.0. In this case, the font does not contain glyph names at all.
 Changing the formatType, i.e. the table’s version number, from 2 to 3
will remove glyph names from the table. Changing it from 3 to 2 will add
glyph names (placeholders, actually).

The italicAngle value should be consistent with the ItalicAngle in ‘CFF’
top dictionary (if this is a cff-based OpenType font) and with the hhea
table’s caretSlopeRise and caretSlopeRun. More in the cConsistency
Checker chapter.

If the font is a cff-based OpenType font, make sure underlinePosition
and underlineThickness are consistent with the ‘CFF’ top dictionary’s
UnderlinePosition and UnderlineThickness. The underline position is
calculated differently in both tables, please see the ccff section for details.

Info: The post table. clocal cwww

A version 3.0 post table.

./OTM Manual resources/OpenType specification/post.htm
http://www.microsoft.com/typography/otspec/post.htm

46

dtl otmaster : t tc Fonts

ttc and otc Fonts
A ttc (TrueType Collection) font contains more than one sub-font. A ttc
font’s TTC Header points to each sub-font’s header information consisting
of Offset Table and Table Directory which points to tables associated with
this sub-font. (Version 2.0 of the TTC Header will also reference a common
DSIG table.) These then are followed by all tables. This allows a ttc’s
sub-fonts to ‘share’ tables that are identical, and –which is the example
given in the OpenType specification– even use a single glyf table holding all
glyphs of all sub-fonts, yet each sub-font’s loca table only refers to glyphs
relevant for this sub-font.

With ttc fonts, OTMaster’s table overview starts with the Root entry.
Root holds TrueType Collection Format which in turn holds TTFont 1,
TTFont 2, TTFont 3, etc., as many as there are sub-fonts in the ttc font.
Each TTFont (like the OpenType Font Format) holds an Offset Table and
Table Directory, followed by all tables found in the sub-font.
 OTMaster lists, for each sub-font, all referenced tables – even if these
are ‘shared’ by multiple sub-fonts. Once a ‘shared’ table is adjusted for a
single font, this table will be duplicated.
 OTMaster supports otc (OpenType Collection) fonts too. An otc
is essentially the same as a ttc except that it is CFF table based rather than
glyf table based.
 Also see The OpenType Font File. clocal cwww

The structure of a ttc font’s data
(simplified):

Table Directory
table name, start, length
table name, start, length
table name, start, length

Table

Offset Table
incl. version (tt)

and number of tables

Table

ttc Header
incl. version (ttc),

number of sub-fonts and
sub-fonts’ start points

Table Directory
table name, start, length
table name, start, length
table name, start, length

Table

Offset Table
incl. version (tt)

and number of tables

Table

Table

./OTM Manual resources/OpenType specification/otff.htm
http://www.microsoft.com/typography/otspec/otff.htm

47

dtl otmaster : tools menU

OTMaster’s Toolbox
OTMaster is not only good for reviewing and editing a font’s ‘raw’ tables
but comes with tools for higher-level –and thus more user-friendly– access
to some font data. Some of these tools do not show a specific table’s
content but represent data in a thematic/categorized way: The Font Viewer
shows all, or a selection, of a font’s glyphs. The Glyph Viewer shows all
data related to an individual glyph, thereby combining data from various
tables like glyf or CFF for outlines, post or CFF for glyph names, cmap for
Unicode codepoints, hmtx and/or vmtx for metrics, etc.

t ools menu

Font Viewer
The table overview’s Root and the Font Viewer alike give a visual summary
of a font’s glyph set:

— Glyph Set and Code Ranges
These define which part of the glyph set to show, and how:
 The leftside popup menu offers categories for defining glyph sub-sets
by Glyph Index (gid), Unicode, or any cmap subtable present in the
font. The category also determines how glyphs are sorted in the overview.
 The rightside textbox allows you to restrict the glyph overview to
selected glyphs or glyph ranges. These are defined by gid or Unicode code-
point, depending on the category selected in the popup to the left.

When selecting Root, the content area
shows the same glyph overview as does
the Font Viewer.

Tip: Use the Search field to quickly
locate glyphs by glyph index. The
viewer will jump to this glyph and
highlight it.

Glyph indices are expected to be
integer numbers (0, 1, 123).
Unicode codepoints are expected to
be hexadecimal numbers, without
leading zeros but preceded by ‘0x’
(0x31, 0xB5).
 You can provide a single identifier
(0x20), a comma-separated list of
identifiers (0x20, 0x61), a range
delimited by first and last identifier
(0x20-0x61), or a combination
thereof (0x20, 0x40-0x61, 0xB5).
 Confirm with return.
 The text input box will remember
previous glyph sub-sets, and you may
get back to them by using the boxes’
popup functionality – by clicking on
the popup menu’s arrow button or by
placing the cursor inside the box and
using u or t to jump to any previous
glyph sub-set.

48

dtl otmaster : tools menU

— View
Image shows filled shapes.
Outline adds a colored outline.
Points shows on-curve points.
Indices shows points’ index numbers.
Box draws the bounding box around each glyph.
hhea asc/dsc are the hhea table’s ascender/descender heights.
typo asc/dsc are the OS/2 table’s sTypoAscender/sTypoDescender height.
win asc/dsc are the OS/2 table’s usWinAscent/usWinDescent heights.
Gritfit will align points, at current ppem size, to the pixel grid.
Grayscale draws grayscaled outlines.
Dist. is the distance between bounding boxes. With a value of 0, bounding
boxes will touch.
Split determines the number of glyphs per line.

A glyph index is shown in the top left corner of each glyph’s bounding box.

A double-click on a glyph in the Font Viewer glyph overview, or in the Root
content area, will +

shift+double-click on a glyph will open it in the cGlyph Editor.

Note: Since OTMaster uses the
FreeType rasterizer, Grayscale may
produce results that differ from
‘real world’ output, especially at
small ppem sizes.

49

dtl otmaster : tools menU

Text Viewer
The Harf Buzz-based Text Viewer allows testing a font’s OpenType Layout
features. The result is displayed in the main field.

— Font
By default, the font currently selected in the Font Viewer will be displayed.
Open … a font not yet loaded in OTMaster.
Activate or deactivate individual OpenType Layout features in the
Feature Selector. Open this selector via Features …
Or select one of the fonts already loaded in OTMaster.

— Text
Open … a sample text file.
Edit or enter sample text in the Text Editor. Open this editor via Edit …
Print … the content of the Text Viewer’s main field.
Close the sample text file that you have opened before.
Reload the sample text file that you have opened, e.g. after having edited
(but not saved) the sample text in the Text Editor.

Markings shows glyph boundaries. You may adjust the Size [ppem]
as well as Line Spacing [%], and choose from writing directions left to
right or right to left.
Winding Fill chooses the non-zero winding rule over the (default)
even-odd rule for determining glyphs’ fill.

Tip: You may open more than one
Text Viewer at the same time.

The Text Viewer (foreground
window) along with the Feature
Selector (background window).

Tip: Drag & drop characters, i.e.
encoded glyphs, from OTMaster’s
main dialog or from the Font Viewer
into the Text Viewer to append
these characters at the end of the
sample text!

Note: Close and Reload have an
effect only if a sample text file has
been opened before.

50

dtl otmaster : tools menU

Click on a character to open its glyph in the Character Metrics dialog.
(See below.)

shift+click on a character to open its glyph in the cGlyph Editor.

— Feature Selector
Script allows you to select a script whose OpenType Layout features you
would like to test.
Language offers all languages available for the selected script.
The subsequent table lists all features available for the selected script and
language, each with the usual Feature tag, the State of selection (off,
default, on), a Description of the feature’s intended behavior, and a
Comment that reports this feature’s default state.
Finally, you can Reset script, language and features’ states to default.

— Text Editor
This little but full-fledged Text Editor can be used
1. to enter some ad hoc sample text which remains independent of any file.
Apply or Apply to All so that changes become effective in the respective
Text Viewer or in all Text Viewers.
2. to edit a sample text file that you have opened via the Text Viewer.
3. to Open …, edit, and then Save or Save As … any arbitrary text file,
irrespective of whether you will use it as sample text in the Text Viewer.

— Character Metrics
The Character Metrics dialog offers a glyph’s Glyph Index (gid),
or Unicode codepoint as well as left side bearing, advance width, and
right side bearing.

Note: Each Feature Selector’s
settings affect only the Text Viewer
from within which the selector has
been opened.

Note: Please keep in mind that
the content of the Text Editor
reflects the content of a file that you
have Open…ed before and will
eventually Close again. It is this
file’s content that you are editing.
That is, unless you Detach the
content from the file, in which case
you will need to Save the content
in a new file, or unless you have
never opened a file in the first place.

51

Since OTM 6, you may also select a glyph right in the Text Viewer to
adjust the lsb (via the white arrow), the outline’s position (via the black
arrow) while keeping the glyph’s width intact, or the rsb (via the red
arrow). Alternatively, you may adjust lsb, aw [advance width], and rsb
in the numeric fields that appear as soon as you select a glyph:

52

dtl otmaster : tools menU

Glyph Viewer
Per glyph, the Glyph Viewer interface gives access to all glyph-related data.

— Glyph Set and Code Selector
In the left popup menu choose whether to identify a glyph by Glyph Index
(gid) or Unicode codepoint. In the right text input box, define a glyph’s
glyph index or codepoint.

— View
Image shows filled shapes.
Outline adds a colored outline.
Points shows on-curve points.
Indices shows points’ index numbers.
Box draws the bounding box around each glyph.
hhea asc/dsc are the hhea table’s ascender/descender heights.
typo asc/dsc are the OS/2 table’s sTypoAscender/sTypoDescender height.
win asc/dsc are the OS/2 table’s usWinAscent/usWinDescent heights.
Hints shows hints if existing.
Gritfit will align points, at current ppem size, to the pixel grid.
Grayscale draws grayscaled outlines.
ppem is the ppem size at which the glyph is rasterized.
Zoom allows you to scale the rasterized image up or down which makes it
possible to see the actual rasterization in detail.

Glyph indices are expected to be
integer numbers (0, 1, 123).
Unicode codepoints are expected to
be hexadecimal numbers, without
leading zeros but preceded by ‘0x’
(0x31, 0xB5).

Use the scrollbar to the right of the
glyph review area to flip through all
glyphs!

Note: Since OTMaster uses the
FreeType rasterizer, Grayscale may
produce results that differ from
‘real world’ output, especially at
small ppem sizes.

Tip: If a font’s upm (units per em)
is 1000 and if you choose 160 ppem,
then the 1000 units will be scaled
such that they fit into 160 pixels
upon glyph rasterization. The effect
of this can be studied by increasing
the Zoom factor.

53

dtl otmaster : tools menU

— Glyph Encoding Editor
The first entry is the glyph name, which is called
1. ‘cff’ id with cff-based OpenType fonts (‘id’ because in cid-keyed fonts
this would not be a name but a mere index value), and
2. ‘post’ name with glyf-based OpenType fonts.
‘cmap’ subtable codes shows as many entries as there are subtables in the
cmap table. For each subtable there is a popup text box which may contain
none, one or more Unicode codepoints. Press the del key to delete the
respective subtable’s codepoints.
 Changes in this area will be reflected in ‘cmap’ table and vice versa.

— Bounding Box
xMin is the smallest horizontal extension of the glyph.
yMin is the smallest vertical extension of the glyph.
xMax is the largest horizontal extension of the glyph.
yMax is the largest vertical extension of the glyph.

— Metrics Editor
lsb is the left sidebearing which is equal to xMin.
adw is the advance width.
tsb is the top bearing.
adh is the advance height.
 The right sidebearing is implicit and can be calculated as
 rsb = adw – xMax
 tsb and adh relate to vertically oriented glyphs whose origin point,
in cff-based OpenType fonts, is at the top center of a glyph’s bounding
box. An illustrations for this can be found in Adobe’s afm specifications,
p. 11, fig. 1. cwww

Tip: Make sure that you provide
or adjust codepoints for all cmap
subtables, not just one …

Note: In cff-based OpenType
fonts, these values relate to smallest
or largest extensions of a glyph
regardless if there are on-curve
extremum points or not. In glyf-
based OpenType fonts, these values
relate to coordinates of outermost
on-curve or off-curve points.

http://partners.adobe.com/public/developer/en/font/5004.AFM_Spec.pdf

54

Side by Side Viewer
The Side by Side Viewer shows, for a given character, the corresponding
glyphs from all fonts that are currently opened in OTMaster.

As with other viewers too, use the scrollbar to navigate through the
character set.
Code Ranges allows you to select a range of characters offered for review
by stating single, or ranges of, Unicode codepoints.
Code Set helps you narrow down the selection of characters offered for a
visual comparison: codes mapped in any font shows characters even
if they do not exist in one or more of the fonts, codes mapped in all fonts
shows characters only if present in all fonts, codes mapped in [. . .] but
unmapped in other fonts shows all characters present in the according
font even if they do not exist in one or more of the other fonts.
Display Options are: Show a filled glyph Image. Show a glyph’s Outline.
Determine whether fill, i.e. what is black and white in the glyph image,
is calculated using the non-zero Winding Fill rule. cwww If the latter
option is deactivated, fill is calculated using the even-odd rule. cwww

A right-click into a specific glyph’s box brings up a context menu whose
functions help rearranging the displayed glyph. It can be moved to the left
or right or can be hidden, and shown again. The manual arrangement can
be reset to restore the default arrangement.

A double-click into a glyph’s box will open it in the cGlyph Viewer.

A shift+click into a glyph’s box will open it in the cGlyph Editor.

Use the scrollbar to the right of the
review area to navigate through
the available or selected range of
characters.

Unicode codepoints are expected to
be hexa-decimal numbers, without
leading zeros but preceded by ‘0x’
(0x31, 0xB5).
 You can provide a single identifier
(0x20), a comma-separated list
of identifiers (0x20, 0x61), a range
delimited by first and last identifier
(0x20-0x61), or a combination
thereof (0x20, 0x40-0x61, 0xB5).
 Confirm with return.

https://developer.apple.com/fonts/TrueType-Reference-Manual/RM02/Chap2.html#distinguishing
http://en.wikipedia.org/wiki/Even�odd_rule

55

dtl otmaster : tools menU

Embedded Bitmap Viewer
The Embedded Bitmap Viewer visualizes bitmaps from EBLC and EBDT or
other bitmap tables.

— View
Tables allows you to select which tables’ bitmap information to show.
Sizes are the bitmap sizes covered by the selected tables.
Glyphs allows choosing a glyph by its glyph index.
Zoom will zoom in or out.
Outline displays the outline as well.

— Glyph Metrics
width is the number of columns of data, i.e. the number of pixels in
horizontal direction.
height is the number of rows of data, i.e. the number of pixels in vertical
direction.
horiBearingX is the number of pixels from the origin to the left edge of
the bitmap (horizontal layout).
horiBearingY is the number of pixels from the origin to the top edge of
the bitmap (horizontal layout).
horiAdvance is the bitmap’s advance width (horizontal layout).
vertBearingX is the number of pixels from the origin to the left edge of
the bitmap (vertical layout).
vertBearingY is the number of pixels from the origin to the top edge of
the bitmap (vertical layout).
vertAdvance is the bitmap’s advance height (vertical layout).
 All these values are read-only.

The Embedded Bitmap Viewer. Use
the scrollbar to the right of the glyph
review area to flip through all glyphs!

56

Color Viewer
In summer 2013, Microsoft presented their solution for color fonts and
introduced two new tables, COLR and CPAL. The solution is elegantly
simple. Starting point is a base glyph which usually is encoded and
serves as a fallback for applications that do not know the new tables.
The COLR table maps this to-be-colored base glyph to one or more
glyphs, each of which holds outlines for a specific color plus references to
the respective color definitions. The CPAL table in turn provides the
color definitions, stored as rgba values. There may be multiple sets of
color definitions, called ‘palettes’, from which applications may choose.

This structure is reflected in the Color Viewer which essentially visualizes
the content of the COLR table. The top level is a list of base glyphs,
identified by gid. Clicking the + sign next to one of them will reveal a
nested list of pairs each consisting of one color-specific glyph, again
by gid, and a reference to a color definition, by paletteIndex. The latter
in turn refers to a colorRecord stored in the CPAL table; see the
column for the paletteIndex. Please note that there may be multiple
color palettes in the CPAL table, each of which has its own definition
for a given colorRecord by way of red, green, blue and alpha values.
A special paletteIndex value of 0xffff indicates that the user-defined
foreground color is to be used.

Top: Base glyph 266. COLR will
map it to color-specific glyphs.
Middle: Color-specific glyphs. Glyph
267 for grey outlines, glyph 2090
for white outlines, glyph 2146 for
dark grey outlines, glyph 268 for
brown outlines.
Bottom: Colored glyphs combined.

Open the Color Viewer and ‘cpal’
entries side by side to review both
a color glyph’s composition and the
colors it makes use of.

57

There is more than one way to change a color: Either adjust a paletteIndex
in the Color Viewer, thereby selecting another predefined color. Or open
the CPAL table in OTMaster’s main dialog, choose a palette, then redefine
the red, green, blue and alpha values of a given colorRecord. Or add a
new colorRecord by duplicating an existing one, adjusting its values, and
referring to it from the Color Viewer.

Creating a color glyph from a normal glyph takes only a few steps:

1. Open the Glyph Copy Tool. Choose a base glyph, either by entering
a numeric Source Glyph Index (gid) or by using the scrollbar next
to the glyph image. For every color, make a copy of this glyph by clicking
the Append Source Glyph to Target Font button. Target Font
should be same as source font. Please note that glyph copies will be
added after the (target) Glyph Index (gid) Selector.
 To add new glyphs at the end of the font, enter any number higher
than the number of glyphs in the font. OTMaster will automatically
make it the last gid in the font.

58

In our example, we appended new glyphs at the end of the font:

2. Open each of the new glyphs in the Glyph Editor, choose the Shift tool,
select and delete all contours not needed in this glyph. The result:

3. Go to the COLR table’s content, select any entry and use the Edit menu’s
Grow function. This will duplicate the selected entry which serves as a
template for our new color glyph definition. Below, we chose entry number
825 to create the new entry number 826. (If there are no COLR and CPAL
tables in our font, you may Cut and Paste them over from another font.)

After opening the nest by clicking the + sign, you’ll see entries for specific
color glyphs. If there are too many, select and Cut those not needed. If
there are not enough, select and Grow any of them. In our example, we
need four entries – one for the cloud, three for the rainbow elements. Now
we adjust gid numbers. The top-level gid will reflect the base glyph’s 492,
the nested color glyph gids will reflect the new glyphs’ 2148–2151.

Deleting contours not needed in a
specific color glyph via the Shift tool.

59

4. Open the Color Viewer. Scroll down to the COLR table entry created and
adjusted in the last step. Change colors by adjusting the paletteIndex for
each specific color glyph’s gid. Below, we assigned color definitions 1–4.

60

dtl otmaster : tools menU

‘kern’ Table Viewer
This is a most useful tool to visually check and adjust the kern table. The
currently selected pair is presented in main part of the window.

— ppem
This single option serves to enlarge or reduce the size of the kerning pair,
by choosing another ppem size.

— Subtable
Here you may select which subtable’s kerning you want to review or edit.

The list of kerning pairs which follows consists of three editable columns:
left glyph of the pair by glyph index,
right glyph of the pair by glyph index,
and the kerning value which is relative to the font’s upm value.
In addition, a Comment column translates left and right glyphs’ indices
into glyph names as found in either CFF or post table.

Like in Nested Tables viewing mode, use u and t keys to flip through
all kerning pairs quickly, and b (to right) and shift+b (or B; to left)
to jump from column to column.

The ‘kern’ Table Viewer dialog.

Note: A kern table may contain
more than one subtable, but please
be aware that Windows and os/2
accept a kern table only if it holds a
single subtable of format 0. Also see
the kern table specification. clocal
cwww

./OTM Manual resources/OpenType specification/kern.htm
http://www.microsoft.com/typography/otspec/kern.htm

61

dtl otmaster : tools menU

Existing kerning pairs –left and right glyphs’ indices as well as the kerning
value– can be reviewed and adjusted in the ‘kern’ Table Viewer, but it is not
possible to remove or add kerning pairs. With a little trick, though, you may
do so:

1. Go to the main window and select ‘kern’ subtables (inside of ‘kern’ table)
from the table overview. Click the + sign next to the subtable which
you intend to edit, this will fold out the subtable as a nested table. Possibly
double-click the subtable’s header to show its entries in a new window.

 Now either remove a kerning pair:
2. Select the pair which you intend to remove.
3. Choose Edit > Cut.

 Or add a new kerning pair:
2. Select any kerning pair, preferrably the last one.
3. Choose Edit > Grow to duplicate this selected pair.
 Change left glyph index, right glyph index and/or kerning value,
and you have added a new kerning pair! Go back to the ‘kern’ Table Viewer
and visually adjust the kerning value. If you added new pair(s) at the end
of the kern table, you know where to find them …
 Finally choose Edit > Fixup to reorder kerning pairs by glyph indices.

Remove or add a kerning pair in three
steps.

62

dtl otmaster : tools menU

‘gpos’/‘gsub’ Viewer
The ‘gpos’/‘gsub’ Viewer is a tool for reviewing the content of the two
most important OpenType layout tables, GSUB for glyph substitution and
GPOS for glyph positioning. In case of the GPOS table, positioning values
can be adjust. The viewer presents these tables’ data visually, which makes
it possible to check a font’s layout behavior in a comfortable way. Data is,
structurally, presented in the same way as found in these tables.
 Both GSUB and GPOS tables consist of three lists: Script list, Feature
list, and Lookup list.
 The Script list sums up all scripts explicitly addressed by the layout
table (these are scripts – or writing systems– like ‘latn’ for Latin or ‘cyrl’ for
Cyrillic).* Per each script, there is a list of languages explicitly addressed
by the layout table as well as a ‘default’ language for which there is a special
place in the data structure. In case that a layout application cannot find a
match for the selected language (e.g. by way of the spelling dictionary in
Adobe InDesign) in the font’s layout table, it would fall back to this ‘default’
language. And per each language there is a list of features associated with it.
 The Feature list, for each feature to which a script/language
combination refers, points to one or more lookups in which the actual
substitution and positioning behavior is defined.
 Finally, the Lookup list points to individual lookups, each of which
defines portions of layout behavior.

Users of volt are familiar with this structure because volt presents layout
data in a way which resembles layout tables’ data structure. Users of afdko
and Adobe’s feature file syntax may need some time to get accustomed
to it because the higher-level nature of Adobe’s feature file syntax hides
the complexity of the data structure of compiled layout tables. So again
our recommendation that you study especially the documents related to
OpenType layout tables, in particular to GSUB and GPOS.

OpenType layout data is organized
by script, language system,
typographic feature and lookup:

Laguage (system)

Laguage (system)

Laguage (system)

Script

Lookup

Lookup

Feature

Script

Feature

Feature

Lookup

Lookup

Lookup

Lookup

 * The default script, or ‘dflt’
(all-caps!), was introduced rather late
by Adobe. While there is a special
place for the default language, or ‘dflt’
(lowercase!), in the Language list,
there is no such thing for the ‘dflt’
script – hence it is a script like any
other, included in the regular Script
list, and identified by its tag.

Info: The GPOS table. clocal
cwww The GSUB table. clocal
cwww Also see the OpenType
Layout Common Table Formats
document. clocal cwww

./OTM Manual resources/OpenType specification/gpos.htm
http://www.microsoft.com/typography/otspec/gpos.htm
./OTM Manual resources/OpenType specification/gsub.htm
http://www.microsoft.com/typography/otspec/gsub.htm
./OTM Manual resources/OpenType specification/chapter2.htm
http://www.microsoft.com/typography/otspec/chapter2.htm

63

dtl otmaster : tools menU

The ‘gpos’/‘gsub’ Viewer’s top popup boxes reflect the layout tables’
internal structure:

— Layout Table
At first you need to choose from ‘GSUB’ table or ‘GPOS’ table – ‘GSUB’
table cares for glyph substitution, ‘GPOS’ table cares for glyph positioning.

— Script
Select the script whose lookups you plan to review.

— Language
Select the language whose lookups you plan to review. The choise of
languages depends on which Script you have selected previously.

— Feature
Select a feature whose lookups you plan to review. The choice features
depends on which Language you have selected previously.

— Lookup
The selection of lookups shown in this popup box is determined by your
previous choices of Script, Language and Feature.

— Writing Direction
Options left to right, right to left and top to bottom make sure that
glyph strings are presented in correct order.

Writing Direction options.

Tip: To see more lookups, and
independently of previous choices of
Script, Language and/or Feature,
select the option <any> in Script,
Language and/or Feature.

64

dtl otmaster : tools menU

— Subtable View
The content of the lookup can be viewed in three modes.

1. Data. This is exactly what you see if you inspect ‘GSUB’ lookups or
‘GPOS’ lookups in the table content area:

2. Report. Provides you with a text report of the selected lookup’s content:

65

dtl otmaster : tools menU

3. Image. This is the default viewing mode. Substitution or re-positioning
is visualized, so that you may evaluate a lookup’s layout behavior quickly at
a glance, and even evaluate positioning adjustments:

The main area is headed by this lookup’s index (in parentheses) and type,
followed by additional information like the index of the current subtable or
the substitution or positioning format. The original glyph is colored red,
the replaced or repositioned glyph is colored green.
 Like in other OTMaster dialogs, use the scrollbar next to the review
image to switch from one substitution or positioning entry to another!

Which information are shown in Image viewing mode depends on
whether you are inspecting ‘GSUB’ table or ‘GPOS’ table and also depends
on the lookup type. A few examples are given below.

Use the scrollbar to the right of
the preview area to flip through
all substitutions or positioning
adjustments.

66

dtl otmaster : tools menU

1. GSUB:
1.1. With non-contextual substitution, there are no further options. You
may use the scrollbar to flip through glyph substitutions:

ppem is the ppem size at which the review image is rasterized.

Since version 2.0 of OTMaster, the ‘gpos’/‘gsub’ Viewer offers an
additional option Writing Direction. to change the display order.

67

dtl otmaster : tools menU

1.2. With contextual substitution, there are a few more pieces of
information. Besides a red original glyph and a green adjusted glyph,
there is a black context glyph in the preview area:

— ppem
The size at which the review image is rasterized.

— Backtrack
— Input
— Lookahead

Input is always shown, this is the glyph or glyphs will be substituted,
together with Backtrack and/or Lookahead. Contextual substitution
may involve more than just one of each!
 If (in the order of appearance) Backtrack or Input or Lookahead
involves but a single glyph, the respective popup is greyed out and shows
the single glyph’s name. If Backtrack or Input or Lookahead involves a
glyph class, then the popup shows the first glyph by default. You may use
the popup to select any other glyph: just click on the popup and move the
mouse up or down the list, and the review will instantly show the glyph
touched by the mouse – no need to click.

68

dtl otmaster : tools menU

2. GPOS:
2.1. With single positioning, the affected glyph as well as the positioning
adjustment value are shown:

— View
ppem is the ppem size at which the review image is rasterized.
In addition, two radio buttons allow to choose from write horizontally
and write vertically which will arrange the glyphs involved either side by
side or one above the other.

— Glyph 1
For each glyph there is a popup with the glyph name. Glyph Index is the
selected glyph’s index. Depending on which kind of adjustments have
been made, values for XPositioning, XAdvance, YPositioning and/
or YAdvance adjustment are shown.

Writing Direction options are
available in the GPOS too, of course.

69

dtl otmaster : tools menU

2.2. With pair positioning, there are a few additions:

— View
ppem is the ppem size at which the review image is rasterized.
Again, two radio buttons allow to choose from write horizontally and
write vertically which will arrange the glyphs involved either side by
side or one above the other.

— Glyph 1
— Glyph 2

For each of them there is a popup with the glyph name. If it is but a single
glyph, the popup will be greyed out. If there is more than one, you may
click on the popup and move the mouse up or down the list to see any of
the other glyphs in the review – no need for clicking. Glyph Index is
the glyph index of the glyph currently shown. Depending on which kind
of adjustments have been made, values for XPositioning, XAdvance,
YPositioning and/or YAdvance adjustment are shown. The latter
values can be adjusted. However, the general structure of GSUB and GPOS
tables cannot be changed: it is not possible to add anything that has not
been in these tables before, nor to remove anything.

70

dtl otmaster : tools menU

2.3. With contextual positioning, black context glyphs join red original
glyph and green adjusted glyph:

— ppem
The size at which the review image is rasterized.

— Backtrack
— Input
— Lookahead

Input is always shown, this is the glyph or glyphs to be substituted,
together with Backtrack and/or Lookahead.
 No values are shown, but the effect is visible in the preview. In the
example above, the ‘D’s right sidebearing is increased when followed by
space and a class which contains an ‘A’.

Note: The ‘gsub’/‘gpos’ Viewer
allows you to review individual
lookups. If a feature refers to more
than one lookups, these lookups’
behavior will be additive. This has
different effects with GSUB and
GPOS.
GSUB: All lookups associated with
a feature will be applied. However,
if a previous lookup has substituted
an input glyph already, additional
lookups will not find a match
for the same input glyph any more
because this has been substituted
already and does not exist any more
in the input string. In so far, lookup
order matters, as does the order
of substitutions inside of a subtable.
GPOS: And again, all lookups
associated with a feature will be
applied. If more than one lookup
adjust positioning and/or advance
width of a specific glyph, then all
lookups’ adjustments will add up.
It is important to keep this in mind,
because the ‘gsub’/‘gpos’ Viewer
visualizes only individual lookups’
adjustments, i.e. does not show the
result of a feature’s total positioning
adjustments!

71

dtl otmaster : tools menU

2.4. Mark-to-base positioning serves to define where mark glyphs (accents
as well as vowels and dots in Arabic-script fonts) attach to base glyphs
(letters). Each mark glyph carries an anchor point and is associated with
a mark class, and each base glyph carries an anchor point per mark class.
Thus anchor points determine where on a base glyph a mark glyph sits.

An anchor point is visualized by a red cross. Its position, in relation to the
(black) base glyph, can be adjusted via drag/drop of the red cross. Its
position, in relation to the mark glyph, can be adjusted via drag/drop of
the (blue) mark glyph. Numerical adjustment is possible too.

— View
size [ppem] is the ppem size at which the review image is rasterized.
spacing [%] is the distance between the glyphs’ boxes, in percent of ppem.
There are four display options – all glyphs one by one (a single mark-
to-base pair), mark glyphs all at once (a row of all mark-to-base pairs for
the selected base glyph), base glyphs all at once (a row of all mark-to-base
pairs for the selected mark glyph), all glyphs all at once (a table of all
mark-to-base pairs with a column per base glyph and a row per mark glyph).

— Mark Glyph
— Base Glyph

For each mark and base there is a popup from which a glyph can be chosen
by name. Which glyphs are shown in each popup depends on the selected
Classes in the Filter section (usually there are separate classes e.g. for top
and bottom mark glyphs). X and Y are the anchor’s coordinates.

Below are examples for the four
display options.

all glyphs one by one

mark glyphs all at once

base glyphs all at once

all glyphs all at once

Note: Adjusting a mark glyph’s
anchor position will reposition
this mark for all base glyphs. And
adjusting a base glyph’s anchor
position will reposition all marks
associated with this anchor.

72

dtl otmaster : tools menU

2.5. Mark-to-mark positioning serves to define where mark glyphs attach
to other mark glyphs. Each mark glyph (attaching to another mark glyph)
carries an anchor point and is associated with a mark class, and each mark
glyph (allowing another mark to attach to it) carries an anchor point per
mark class.

This resembles mark-to-base positioning. As a consequence, the dialog and
editing behavior is identical.

The interfaces for mark-to-mark
positioning and for mark-to-base
positioning are identical.

73

dtl otmaster : tools menU

Consistency Checker
This tool helps finding inconsistencies across OpenType fonts’ tables.
Most Consistency Checker dialogs follow the same pattern. They present
table entries which are expected to be consistent. Check compares entries’
values and suggests corrections. Uncheck reverts to original values. And
Apply finally applies automatically or manually refined values to the font.

— Header
The Header section of the Consistency Checker gives an overview, in one
dialog, of different table’s entries which need to be consistent:

1. Weight and Style compares the OS/2 table’s fsSelection,
usWeightClass and the head table’s macStyle. If a font is a bold style,
this should be reflected in all three entries, if a font is an italic style, this
should be reflected in fsSelection and macStyle.
 Please see the OS/2 table spec clocal cwww for fsSelection and
usWeightClass with the head table spec clocal cwww for macStyle.

2. Font Metrics compares the hhea table’s ascender/descender (the
hhea entries) with the OS/2 table’s sTypoAscender/sTypoDescender
and usWinAscent/usWinDescent (the typo entries and win entries).
Via the top row radio buttons you may choose against which of these
entries the other ones will be checked. The use font box for win entries
option derives the OS/2 table’s usWinAscent/usWinDescent values
from the largest glyph dimensions found in the font.

Tip: In addition, consider using
font checking tools like Microsoft’s
Font Validator cwww as well as the
command-line tool CompareFamily
cwww which is included in Adobe’s
afdko.

./OTM Manual resources/OpenType specification/os2.htm
http://www.microsoft.com/typography/otspec/os2.htm
./OTM Manual resources/OpenType specification/head.htm
http://www.microsoft.com/typography/otspec/head.htm
http://www.microsoft.com/typography/FontValidator.mspx
http://www.adobe.com/devnet/opentype/afdko/

74

dtl otmaster : tools menU

 Please review Check’s adjustments – you may not agree with them
because it sets:
 ascender = sTypoAscender = usWinAscent
 descender = sTypoDescender = usWinDescent
Both upm and the three sets of vertical metrics
 a. head unitsPerEm
 b. hhea ascender/descender/lineGap
 c. OS/2 sTypoAscender/sTypoDescender/sTypoLineGap
 d. OS/2 usWinAscent/usWinDescent
need to be defined carefully because different applications pick different
entries to determine the default line-to-line distance. To achieve consistent
default line-to-line distance in most – though not in all– applications, you
need to take care that the ‘sum’ of each of the first three sets is the same.
Microsoft’s and Adobe’s current practice for determining (vertical) font
metrics –which may be interpreted as a recommendation– is this:
 2.1 The pair sTypoAscender/sTypoDescender indicates how
much of upm (the head table’s unitsPerEm) is reserved for ascenders and
descenders. This can be expressed as:
 sTypoAscender - sTypoDescender = upm
It is expected that your typeface is designed and upm is defined such that
normal ascenders and descenders as of ‘A’–‘Z’ and ‘a’–‘z’ remain within the
upm’s boundaries, or sTypoAscender and sTypoDescender.
 2.2 sTypoAscender/sTypoDescender/sTypoLineGap (set c)
defines a font’s ideal line-to-line distance. It depends on the type face’s
design, but usually sTypoLineGap is about 20% of:
 2.2.1 sTypoAscender - sTypoDescender
 2.2.2 upm
(According to 2.1, 2.2.1 and 2.2.2 are equal.) For example, upm = 1000 and
sTypoLineGap = 200 result in a default line-to-line distance of 120% of upm
which would translate into 10/12 pt.
 2.3 Since sTypoAscender/sTypoDescender/sTypoLineGap (c)
were defined such that the ‘sum’ results in an ideal default line-to-line
distance, you may set the OS/2 table’s version to 4 and fsSelection bit 7
to 1. This indicates that sTypo-values should be used for calculating default
line-to-line distance rather than usWin-values. Once the OS/2 table’s
version is 4 however, you need to set fsSelection bits 8 and 9 consciously!
 2.5 sTypoAscender/sTypoDescender/sTypoLineGap (c)
and ascender/descender/lineGap (b) share same values, so you can
simply reuse the first set’s values for the latter set:
 ascender = sTypoAscender
 descender = sTypoDescender
 lineGap = sTypoLineGap
 2.6 usWinAscent/usWinDescent (d) provide information about
a font’s clipping zones – the largest extensions that you do not want to see
clipped, i.e. cut off. These values reflect the tallest glyphs in the font.

An example that meets all conditions:
head
upm = 1000
OS/2 hhea
sTypoAscender = ascender = 800
sTypoDescender = descender = -200
sTypoLineGap = lineGap = 200
usWinAscent = 850
usWinDescent = 350

Tip: Please consult John Hudson’s
Setting Cross-Platform Vertical
Metrics, especially the latest
‘Update’. cwww Rather for the
illustration than the method itself
which is obsolete now, see Karsten
Lücke’s Font Metrics. cwww

Note: This is a recommendation,
not a requirement! Also see cos/2.

Note: The hhea table’s descender
& the OS/2 table’s sTypoDescender
are given as negative values – but
usWinDescent must be given as a
positive value! Therefore, the term
‘sum’ ist not exact in a strict sense.

http://typophile.com/node/13081?
http://www.kltf.de/downloads/FontMetrics-kltf.pdf

75

dtl otmaster : tools menU

 With a typeface of normally sized ascenders and descenders, the ‘sum’
of the usWin set will be smaller than the ‘sum’ of the sTypo set. Increase
usWin-values a bit so that the ‘sum’ of each of the three sets is identical:
 sTypoAscender - sTypoDescender + sTypoLineGap (c)
 = usWinAscent + usWinDescent (d)
 = ascender - descender + lineGap (b)
In case that a font contains excessively tall glyphs it may be impossible to
achieve this equation.
 It is strongly recommended that you define vertical metrics such that
they are identical across all fonts that belong to a family. This to make sure
that if a user relies on default line-to-line distance, this would not vary if
one paragraph is set in Regular, the other in Italic or Bold style.

3. Italic Angle allows the comparison of the post table’s italicAngle with
the OS/2 table’s ItalicAngle and the hhea table’s caretSlopeRise and
caretSlopeRun. The relation between these two is
 tan -italicAngle = slopeRun / slopeRise
The vhea table’s caretSlopeRise and caretSlopeRun can be checked too
if this table is present.
 For the sake of consistency, the OS/2 table’s fsSelection and
macStyle are shown again, since their values need to be in tune with italic
angle and slope rise and run.

Tip: If your font is a cff-based
OpenType font, also compare with
the ‘CFF’ top dictionary ItalicAngle,
and possibly with slanting as results
from the FontMatrix which is
located in ‘CFF’ top dictionary as a
nested table.

76

dtl otmaster : tools menU

— Name
The Name section of the Consistency Checker helps inspecting individual
name table entries and serves as a built-in documentation of the name table
nameids, pointing out their correlation with other table’s entries. So you
may flip through your name table’s records and compare your entries with
the recommendations.

— Version
The Version section displays, side by side, various version information as
found in an OpenType font.

Reviewing the name record with
Nameid 2 (the Subfamily name,
Macintosh platform).

A font’s version information side by
side.

77

dtl otmaster : tools menU

— Statistics
Upon clicking the Check button, the Statistics section of the Consistency
Checker will gather minimum and maximum metrics. It also shows the
glyphs to which these metrics relate (identified by gid). This makes it easy
to track down possibly problematic glyphs. Values which Consistency
Checker considers to be wrong are colored in red.

— Unicode Ranges
The Unicode Ranges section of the Consistency Checker shows the OS/2
table ulUnicodeRange1–ulUnicodeRange4 values and presents
individual bits and their meaning in a list. Editing behavior is described in
context of the cCodepage Ranges section.

Various metrics and the glyphs to
which they relate. The value ‘none’
indicates that either the according
table does not exist or that the table
version does not include these data.

ulUnicodeRange bytes represented
in hexa decimal form and as individual
bits.

78

dtl otmaster : tools menU

— Codepage Ranges
The Codepage Ranges section of the Consistency Checker shows the OS/2
table ulCodePageRange1 and ulCodePageRange2 values and presents
individual bits and their meaning in a list.

Clicking a checkbox will change the state of the according bit and highlight
the adjustment in red – including in the hexadecimal representation:

Accept adjustments by clicking the Apply button.

ulCodePageRange bytes in hexa-
decimal form and as individual bits.

Your adjustments highlighted in red.

79

dtl otmaster : tools menU

Upon clicking the Check button, the Codepage Ranges section (like the
Unicode Ranges section) will show, in the Status column, how many of
the characters referenced by each Codepage Range (or Unicode Range) are
covered in the font’s cmap table:

This also deactivates all bits except those that are relevant based on the
actual character coverage. Again click Apply to accept the changes.

Check how many of a Codepage
Range’s characters are present in a
font and activate the relevant bits.

80

dtl otmaster : tools menU

— Languages
The Languages section of the Consistency Checker compares the font’s
coverage of Unicode codepoints against the icu database. It reports which
scripts and languages are completely covered (green), incomplete (yellow)
or are entirely missing (red). Scripts are first in hierarchy, languages are
second and are shown after clicking the triangle in front of a script’s name.

To avoid getting lost in irrelevant information, you may hide missing
scripts, hide missing languages, but also hide incomplete or hide
complete entires.
 If you select an incompletely covered language, you are shown a list
of missing characters in the bottom right area:

Tip: Don’t forget to click Check
so you see any results at all!

A character is missing for Azerbaijani.

This character is missing!

81

OTM Consistency Checker - ArnoPro-
Regular.otf - Language

Script / Language Status
Latin 97 of 105 languages

complete
Latin Afar 42 of 42 unicodes

mapped (100.0%)
Latin Afrikaans 80 of 80 unicodes

mapped (100.0%)
Latin Albanian 56 of 56 unicodes

mapped (100.0%)
Latin Azerbaijani 68 of 69 unicodes

mapped (98.6%)
Latin Basque 56 of 56 unicodes

mapped (100.0%)
Latin Belarusian 64 of 64 unicodes

mapped (100.0%)
Latin Bislama 52 of 52 unicodes

mapped (100.0%)
Latin Bosnian 63 of 63 unicodes

mapped (100.0%)
Latin Breton 67 of 67 unicodes

mapped (100.0%)
Latin Catalan 79 of 79 unicodes

mapped (100.0%)
Latin Chamorro 56 of 56 unicodes

mapped (100.0%)
Latin Chichewa 56 of 56 unicodes

mapped (100.0%)
Latin Comorian 46 of 46 unicodes

mapped (100.0%)
Latin Czech 88 of 88 unicodes

mapped (100.0%)
Latin Danish 106 of 106 unicodes

mapped (100.0%)
Latin Dutch 64 of 64 unicodes

mapped (100.0%)
Latin English 75 of 75 unicodes

mapped (100.0%)
Latin Esperanto 64 of 64 unicodes

mapped (100.0%)
Latin Estonian 68 of 68 unicodes

1

Script / Language Status

68 of 68 unicodes

mapped (100.0%)
Latin Faroese 80 of 80 unicodes

mapped (100.0%)
Latin Fijian 48 of 48 unicodes

mapped (100.0%)
Latin Filipino/Tagalog 54 of 54 unicodes

mapped (100.0%)
Latin Finnish 72 of 72 unicodes

mapped (100.0%)
Latin Flemish 64 of 64 unicodes

mapped (100.0%)
Latin French 88 of 88 unicodes

mapped (100.0%)
Latin Gaelic (Irish) 74 of 74 unicodes

mapped (100.0%)
Latin Gaelic (Manx) 58 of 58 unicodes

mapped (100.0%)
Latin Gaelic (Scottish) 72 of 72 unicodes

mapped (100.0%)
Latin Gagauz 66 of 66 unicodes

mapped (100.0%)
Latin German 67 of 67 unicodes

mapped (100.0%)
Latin Gikuyu 41 of 41 unicodes

mapped (100.0%)
Latin Gilbertese/Kiribati 24 of 24 unicodes

mapped (100.0%)
Latin Greenlandic 85 of 85 unicodes

mapped (100.0%)
Latin Guarani 62 of 62 unicodes

mapped (100.0%)
Latin Haitian_Creole 48 of 48 unicodes

mapped (100.0%)
Latin Hawaiian 62 of 62 unicodes

mapped (100.0%)
Latin Hungarian 72 of 72 unicodes

mapped (100.0%)
Latin Icelandic 83 of 83 unicodes

mapped (100.0%)
Latin Igo/Igbo 54 of 56 unicodes

mapped (96.4%)

2

Font File: /fonts/ArnoPro-Regular.otf
Encoding: Microsoft; Unicode BMP only
Selection: Glyph Set: Microsoft; Unicode BMP only

Do. Jul 18 15:08:42 2013
page 1 of 11

OTM 3.6 page 1 of 11

0x0020:1 0x0021:2 0x0022:3 0x0023:4 0x0024:5 0x0025:6 0x0026:7 0x0027:104 0x0028:9 0x0029:10

0x002a:11 0x002b:12 0x002c:13 0x002d:14 0x002e:15 0x002f:16 0x0030:17 0x0031:18 0x0032:19 0x0033:20

0x0034:21 0x0035:22 0x0036:23 0x0037:24 0x0038:25 0x0039:26 0x003a:27 0x003b:28 0x003c:29 0x003d:30

0x003e:31 0x003f:32 0x0040:33 0x0041:34 0x0042:35 0x0043:36 0x0044:37 0x0045:38 0x0046:39 0x0047:40

0x0048:41 0x0049:42 0x004a:43 0x004b:44 0x004c:45 0x004d:46 0x004e:47 0x004f:48 0x0050:49 0x0051:50

0x0052:51 0x0053:52 0x0054:53 0x0055:54 0x0056:55 0x0057:56 0x0058:57 0x0059:58 0x005a:59 0x005b:60

0x005c:61 0x005d:62 0x005e:63 0x005f:64 0x0060:122 0x0061:66 0x0062:67 0x0063:68 0x0064:69 0x0065:70

0x0066:71 0x0067:72 0x0068:73 0x0069:74 0x006a:75 0x006b:76 0x006c:77 0x006d:78 0x006e:79 0x006f:80

0x0070:81 0x0071:82 0x0072:83 0x0073:84 0x0074:85 0x0075:86 0x0076:87 0x0077:88 0x0078:89 0x0079:90

0x007a:91 0x007b:92 0x007c:93 0x007d:94 0x007e:95 0x00a0:2841 0x00a1:96 0x00a2:97 0x00a3:98 0x00a4:103

0x00a5:100 0x00a6:157 0x00a7:102 0x00a8:129 0x00a9:165 0x00aa:137 0x00ab:106 0x00ac:148 0x00ad:2834 0x00ae:161

Font File: /fonts/ArnoPro-Regular.otf
Encoding: Microsoft; Unicode BMP only
Selection: Glyph Set: Microsoft; Unicode BMP only

Do. Jul 18 15:08:42 2013
page 2 of 11

OTM 3.6 page 2 of 11

0x00a5:100 0x00a6:157 0x00a7:102 0x00a8:129 0x00a9:165 0x00aa:137 0x00ab:106 0x00ac:148 0x00ad:2834 0x00ae:161

0x00af:126 0x00b0:158 0x00b1:153 0x00b2:495 0x00b3:496 0x00b4:123 0x00b5:149 0x00b6:113 0x00b7:112 0x00b8:131

0x00b9:494 0x00ba:141 0x00bb:118 0x00bc:155 0x00bd:152 0x00be:160 0x00bf:121 0x00c0:169 0x00c1:166 0x00c2:167

0x00c3:171 0x00c4:168 0x00c5:170 0x00c6:136 0x00c7:172 0x00c8:176 0x00c9:173 0x00ca:174 0x00cb:175 0x00cc:180

0x00cd:177 0x00ce:178 0x00cf:179 0x00d0:151 0x00d1:181 0x00d2:185 0x00d3:182 0x00d4:183 0x00d5:186 0x00d6:184

0x00d7:164 0x00d8:139 0x00d9:191 0x00da:188 0x00db:189 0x00dc:190 0x00dd:192 0x00de:154 0x00df:147 0x00e0:198

0x00e1:195 0x00e2:196 0x00e3:200 0x00e4:197 0x00e5:199 0x00e6:142 0x00e7:201 0x00e8:205 0x00e9:202 0x00ea:203

0x00eb:204 0x00ec:209 0x00ed:206 0x00ee:207 0x00ef:208 0x00f0:163 0x00f1:210 0x00f2:214 0x00f3:211 0x00f4:212

0x00f5:215 0x00f6:213 0x00f7:156 0x00f8:145 0x00f9:220 0x00fa:217 0x00fb:218 0x00fc:219 0x00fd:221 0x00fe:159

0x00ff:222 0x0100:609 0x0101:692 0x0102:608 0x0103:691 0x0104:610 0x0105:693 0x0106:612 0x0107:704 0x0108:614

0x0109:706 0x010a:615 0x010b:707 0x010c:613 0x010d:705 0x010e:616 0x010f:708 0x0110:617 0x0111:709 0x0112:621

/fonts/ArnoPro-Regular.otf
Unicode Glyph Mapping: Latin/Azerbaijani
Missing unicodes:
0x02bc '’' (MODIFIER LETTER APOSTROPHE)

1

dtl otmaster : tools menU

There are three printing options. Print Status ... reflects the window’s
leftside area, the script/ language overview:

Print Glyphs ... reflects the window’s rightside area, the glyph overview:

Print Missing ... is a list of missing glyphs as of the bottom right area:

82

dtl otmaster : tools menU

Table Comparator
This tool displays the content of (mostly) fixed-length tables side by side.
Currently the tables head, hhea, vhea, OS/2, maxp, post, CFF, PCLT and
name are supported. All fonts’ Table Lengths can be compared too. The
leftmost column is reserved for the font which is selected in OTMaster’s
main dialog. It serves as reference font. Other fonts are compared against
it. Identical values are marked in green, differences are marked in red.

Table values can be edited right in the Table Comparator.

83

dtl otmaster : tools menU

Glyph Copy Tool
This tool makes it easy to copy a glyph from one font to another, or to
duplicate a glyph within the same font e.g. to add a same-looking but
differently named and reencoded character.

— Select Source Glyph
Source Font offers all fonts opened in OTMaster in a popup menu. To
copy a glyph from a font not opened yet, use Open Fonts … to add it to
popup list.
Source Glyph Index (gid) is the index of the glyph you want to copy.
Source Unicode is the Unicode codepoint of the glyph you want to copy.
So you may determine the source glyph either by its index, its Unicode
codepoint, or by using the scrollbar next to the glyph image to flip through
all glyphs and choose by appearance.

— Select Target Glyph
Target Font offers all fonts opened in OTMaster in a popup menu.
In case that you intend to merely duplicate a glyph within the same font,
activate the checkbox same as source font.
Glyph Index (gid) Selector does not have a function as long as you do
not intend to supersede (i.e. replace) an existing glyph. Glyphs always are
appended as the last glyph of the font.
Supersede Existing Glyph – rather than appending the new glyph to
the glyph set, activating this option will replace an existing glyph which is
defined by the Target Glyph Index (gid) right above the checkbox.
Target Unicode is the Unicode codepoint for the new glyph.
Copy Instructions will copy hinting information with cff-based
OpenType fonts.

The Glyph Copy Tool’s dialog.

Tip: Use the Glyph Copy Tool to
copy outlines from cff-based to
glyf-based OpenType fonts and vice
versa. It will automatically convert
outlines into the required format
and scale them according to the
destination font’s upm as defined in
the head table.

Note: When copying a glyph, the
newly appended glyph’s name is
derived from its destination glyph
index. To give it a friendlier name,
you may want to open the Glyph
Viewer and change the ‘cff’ id or
‘post’ name.

Note: Hinting instructions are
ignored with glyf-based fonts.

84

dtl otmaster : tools menU

Save Target Font after Copy will save the target font immediately after
appending or replacing a glyph. This is necessary for OTMaster to be able
to rasterize the newly appended e.g. in the Font Viewer or Glyph Viewer.

The above image’s settings are for appending a font’s glyph to another font.
As another scenario, the settings in the image below are such that a source
glyph will supersede (i.e. replace) the ‘same’ glyph of another font – here we
replace Argo’s ampersand by Documenta’s:

Tip: For this reason, it is highly
recommended that you only edit
copies of fonts with OTMaster,
to prevent that you inadvertedly
overwrite a font when using Save
while editing. Either, make a copy
of the font file, and edit the copy
in OTMaster. Or, Save As … a font
immediately after opening it, by
another name.

85

dtl otmaster : tools menU

Glyph Editor
OTMaster is not intended to be a full font editor (font editor in the sense in
which FontMaster or its components BezierMaster or IkarusMaster are).
But we did not want to miss some basic glyph editing functionality even
in a ‘mere’ table editor as OTMaster. What if you find duplicate contours
in a glyph of a font ready to be distributed? Go back to the font editor of
your choice, open the font’s source data, correct the error, generate the font
again, possibly repeat additional production steps with afdko or volt or
at least perform some tricks to smuggle new outline data into the previous
font version? Glyph Editor helps.

The Glyph Editor’s toolbars can be rearranged by simple drag & drop.
They can be placed anywhere on the screen, like in the screenshot above.
They can also be attached to any of the Glyph Editor window’s left or
right edges. The dock widget to the right shows either various display
Properties or an overview of editing Tools and the options of the one
currently selected.

The Glyph Editor window consists
of two areas: a main area for glyph
editing and a dock widget presenting
the tools.
 There are three toolbars: File
for importing, exporting and printing
glyphs, the usual Edit functions
including a textbox for selecting a
glyph by glyph index, and various
Selection modes. View modes and
Tools are located in the dock widget
which is new in OTMaster 3.6.
 Defaults can be defined in the
cPreferences.

86

dtl otmaster : tools menU

The Glyph Editor has three toolbars whose functions are reflected in
menus too. Most of the functions can be accessed by way of shortcuts.

file

This menu and toolbar allows to import, export and print glyphs:

 Import ...
Imports individual glyphs. Supported formats are:

— eps Encapsulated PostScript [.eps]
— svg Scalable Vector Graphics [.svg]

 Export ...
Exports individual glyphs. OTMaster can export:

— eps Encapsulated PostScript [.eps]
— svg Scalable Vector Graphics [.svg]
— Editable svg Scalable Vector Graphics [.svg]

The difference between the two svg versions is that the former is an
svg font while the latter is an svg illustration.

 Print ...
Prints the current glyph.

Save ...
Save changes.

 Character Preferences
Opens the Preferences dialog e.g. changing colors of outlines,
points and guidelines. Please see the cPreferences chapter.

Messages ...
Opens the Messages window which displays all status messages.

Clipboard ...
Opens the Clipboard window. There can be multiple Clipboards now, for
collecting outlines from the last couple of Cut or Copy actions.

edi t & selec tion

 &

The edit toolbar holds the basic editing functions. The selection toolbar
is for changing the selection mode. The edit menu holds both the editing
functions and selection modes.

The Clipboard window allows you
to toggle between previously cut or
copied outlines, view them, select and
copy from them, Paste into them,
Clear their content, or Delete any of
these clipboards entirely.

87

dtl otmaster : tools menU

Revert to Saved
Un-does all changes since the font has been saved.

 Undo / Redo
Un-does previous changes and re-does un-done changes, respectively.

 Delete
Deletes the selected points or contours.

 Cut
Cuts the selected points or contours. This will remove them from the glyph
and keep them in the clipboard.

 Copy
Copies selected points or contours into the clipboard without removing
them from the glyph.

 Paste
Pastes points or contours from the clipboard into the glyph, or pastes a
table entry from the clipboard into the currently selected table.

Paste & Shift
Pastes points or contours into the glyph, but with a slight offset.

 Previous
 Next

Goes to the previous or next glyph. You may also enter the glyph index
(gid) into the textbox – and do not forget to confirm with return.

 New
Adds a new glyph at the end of the glyph set.

(De)Select All
Selects all of the glyph’s points or contours. If all of a glyph’s points or
contours are selected already, deselects all of them.

 Select Points
Select points via mouse. Add points to (or remove them from) the selection
by holding shift and clicking on unselected (or selected) points.

 Select Contours
Select individual contours by clicking inside of a contour. Add contours
to (or remove them from) the selection by holding shift and clicking on
unselected (or selected) contours.

88

dtl otmaster : tools menU

 Select Contour Groups
Select contour groups by clicking inside of a contour. Unlike the previous
selection mode, Select Contour Groups will select not only the contour
you have clicked on but also all contours inside of it. Add contour groups
to (or remove them from) the selection by holding shift and clicking on
unselected (or selected) contours.

 Select Character
Select the entire character by clicking inside of any contour.

Swap Background
Swaps foreground glyph and background glyph.

The following menus correspond to the Properties and Tools dock
widgets rather than to toolbars.

vie w

The view menu serves to define various view options.

Tool Bars
Check or uncheck this submenu’s items to show or hide the File, Edit and
Selection toolbars (which have been described above).

Dock Widgets
Check or uncheck this submenu’s items to define which of the two widgets,
editing Tools and display Properties, are available in the Glyph Editor.

Display Options
This menu’s options essentially correspond to those in the Properties
dock widget which is shown here.

Glyph Set
Here you may choose the glyph set which you would like to access in the
Glyph Editor: Glyph Index (gid), Unicode 2+ semantics bmp only,
Macintosh Roman, or Microsoft Unicode BMP only.

Reset
This will restore the default glyph size.

Display Options as of the
Properties dock widget.

89

dtl otmaster : tools menU

t ools

And finally, the tools menu and dock widget offer functions for editing and
designing glyphs.

Zoom
Click into the editing area to zoom in. Hold down the shift key, then click
into the editing area to zoom out. The position of the mouse will define
the center of the new view. Alternatively, hold down the mouse button and
draw a rectangle to zoom into this segment of the editing area.

Scroll by Hand
Click anywhere into the editing area, hold the mouse button down and
move the mouse around to scroll the entire editing area.

Measure
Click on a start point, move the mouse while holding down the mouse
button, and release the button at the end point. The dialog will show
information about the start point’s x1 and y1, the end point’s x2 and y2,
the x- and y-distances between both points as dx and dy, the distance
between both points, and the angle.
Holding shift while measuring ensures
that measurement is strictly horizontal
or vertical.

90

dtl otmaster : tools menU

Guidelines and Grid
Define a variety of horizontal and vertical Guidelines , either at glyph-
specific positions, taken from lsb, rsb, Xmin, Xmax, Center [of
outline] width, Center [of] total width, or at manually defined positions.
Furthermore, guidelines may indicate an Em square at desired Size and
Offset, plus a extra Frame within [the] Em square. Finally, guidelines
may visualize the Italic angle.

Display a Grid in the background. You may define the line-to-line distance
in font units or as lines per em square, decide at which origin point the
grid is meant to start, and request that the grid be displayed only within the
Em square.

Scale
Scale the glyph by mouse or by entering precise scaling factors fx and fy
and position adjustments dx and dy.

91

dtl otmaster : tools menU

Rotate
Use the mouse to rotate the glyph in the edit area, or enter a rotation
angle in the editing area (a negative value is for clockwise rotation) and
then Execute Rotation to apply the rotation or Reset.

Affine Transformation
This will transform the glyph in PostScript transformation matrix fashion.
The equations are given at the bottom right corner of the editing area:

Italization
This will italizise, or slant, the selected points or contours, either by using
the mouse or by entering a value in the editing area (a positive value
will slant to the right side) and confirming with Execute Italization.

92

dtl otmaster : tools menU

Mirror and Fold
Mirrors a glyph horizontally (mirror left/right), vertically (mirror top/
bottom) or both ways (mirror top left/ bottom right), and in various
additional ways too.

Hidden Lines
This function will remove contour overlaps. The four different way of
doing so are illustrated below.

Union will logically add overlapping contours. Intersection will keep
the overlapping (or intersecting) parts. 1–2 will subtract contour 1 from
contour 2. 2–1 will subtract contour 2 from contour 1.

After removing overlaps
with Union.

With Intersection.With 1–2: ‘B’ minus ‘backslash’. With 2–1: ‘backslash’ minus ‘B’.

Before removing overlaps
with Execute Hidden Lines.

93

dtl otmaster : tools menU

Contouring
Use Contouring to add up to three contours around selected contours.
Determine the distance of each additional contour from the original
outline, independently for X and Y direction. Distances are given in units
relative to upm (the head table’s unitsPerEm).

t-Disconnector
The t-Disconnector will disconnect two parts of a glyph’s shapes between
any two points, in three simple steps:

x-Disconnector
This works like the t-Disconnector.

 Select points where After applying x-Dis-
 stems, bars or connector, crossing stems,
 diagonals cross. bars or diagonals
 will be disconnected.

To disconnect e.g. the bar from the
rightside diagonal of an uppercase ‘A’,

1. select two points at which you want
to ‘break up’ the glyph,
2. determine the Overlap amount in
units (relative to the font’s upm) in the
t-Disconnector transformation area,
3. click Execute t-Disconnector to
apply disconnection:

94

dtl otmaster : tools menU

i-Disconnector
The i-Disconnector will disconnect a stem, bar or diagonal at any two
selected points.

Select two points on a stem or bar After applying i-Disconnector, the
where you would like to break it. stem or bar will be split into two.
(You may need to insert points for
this purpose.)

Improve
Outlines are not always flawless from a technical point of view. The image
to the right shows aspects that OTMaster can improve. You may merely
review OTMaster’s finding with Display only (and then Clear marks
again) or apply suggested improvements with Execute.

Sense of Rotation
The easiest way to correct contour directions is to select all contours and
choose the option Automatic. However, you may also select one or more
contours (the Select Contours mode is recommended for this) and
then Reverse the current rotation, or define rotation to be Clockwise
or Counter-Clockwise, or by categories Right Black or Left Black.

Note: In cff-based OpenType
fonts, the outermost contour is
expected to be counter-clockwise.
In glyf-based OpenType fonts, the
outermost contour is expected to
be clockwise. With both formats
though, each contour needs to
have the opposite direction than the
contour in which it is located.

95

dtl otmaster : tools menU

Sequence of Points and Contours
After selecting points or contours, you may change their order by selecting
one of the following options:

Merge
To merge one glyph with another one, go to the destination glyph and
choose the Merge tool:

— Font
This is the font from which to take a glyph for merging with the destination
glyph. You may open a source font with Open Fonts …

— Glyph
This is the glyph to be merged with the destination glyph. You may select
it by using the scrollbar to the right of the preview area, or enter either a
Glyph Index (gid) or Unicode codepoint and confirm with return.

— Adjustment
Here you may define how the added glyph shall align with the destination
glyph: lsb/lsb will position it such that both glyphs’ origin points share
same coordinates, rsb/rsb will align glyphs at the right side, lsb/rsb
will place the added glyph to the left of the destination glyph, rsb/lsb will
place the added glyph to the right of the destination glyph, Center Width
will center-align them (center being calculated from glyphs’ outlines,
excluding sidebearings), and Center Total Width will center-align them
(center being calculated from glyphs’ total widths, including sidebearings).
Or determine the added glyph’s position as X and Y adjustment from the
destination glyph’s origin.

— Options
An additional Y-Offset.
Keep Character Width of the destination character.

Time to remove contour overlaps with Hidden Lines!

96

dtl otmaster : tools menU

Character Hinting
Character Hinting expresses three choices by way of two buttons: Keep
a glyph’s original hinting information – this is the default. Click Omit
Original Hints to remove existing hinting information. Or click the first
button to toggle between Autohinting On and Autohinting Off.

There are some more autohinting options in the Preferences – the kind of
stems which the autohinter shall recognize and tolerances, and the glyphs
from which alignment zones shall be derived. Please see the cPreferences
chapter for details.

Review Changes
Review Changes presents a history of glyph transformations. Here you
may Undo or Redo individual transformations. Or, per glyph, you either
go back to the original version with Revert to Saved or accept your
changes and Clear Undo Stack. Or, for all glyphs, you either go back to
their original versions with Revert All or accept transformations and
Clear All undo information.

Quick Mode
Choose this mode to select and shift selected points or contours. Now with
instructions right in the dock widget.

97

dtl otmaster : tools menU

Digitize
Time to reanimate your Aristo tablet!

Shift
Shift by mouse, at arrow shift base units, or shift numerically, at dx and
dy units. Additional paste & shift dx and past & shift dy parameters
allow you to define an offset at which contours are pasted, relative to their
original positions. Now with instructions right in the dock widget.

Shift Smooth
Shifting a point around will interpolate points between the selected point
and neighbor extremum points, making sure that curves remain smooth.

In Shift Smooth mode, surrounding
curves (up until neighboring
extremum points) will remain smooth
when moving a point.

98

dtl otmaster : tools menU

Background Glyph
This tool allows you to select a background glyph. First, select one of the
fonts opened in OTMaster or open another font. Then, select a glyph by
Glyph Index or Unicode codepoint. Finally, determine the position of
the background glyph relative to the foreground glyph, and which of its
information, e.g. Points, Outlines, Indices, you would like to see.

99

dtl otmaster : tools menU

Closing the Glyph Editor window will produce the following dialog:

Cancel will get you back to the Glyph Editor so that you may continue
drawing.
Review Changes will get you back to the Glyph Editor too and present
Undo and Redo functions – allowing you to reconsider whether or not you
want to apply individual transformations. See cReview Changes.
Discard Undo Information will delete all undo information and apply
all transformations to the font.

100

dtl otmaster : PreFerences

Preferences
The first option relates to cff-based OpenType fonts:

— File Options
Outline Conversion Options determine how cubic beziers are converted
into quadratic beziers, i.e. these options affect only the convertion from
cff-based to glyf-based OpenType fonts. (The other way round is lossless
anyway.)

Outline Tolerance restricts how much converted outlines may deviate
from original outlines. Double Point Tolerance defines how close
two points may get. If they get closer than that, one of them will be deleted.
Extreme Point Tolerance relates to missing extrema. If an extremum
point is missing, it will be inserted. If another point is too close to this new
extremum point, i.e. within the specified distance, then this other point will
be deleted.
The single otf Option named Subroutinize charstrings when writing
‘cff’ table serves to compress the CFF table by finding common contour
segments in all glyphs’ outline descriptions, creating a dictionary of these,
and referencing them.

The following set of options relates to the Glyph Editor:

— User Interface
The option Point Snap Distance defines how far away from an outline or
point the mouse may be while still being able to select them.
Zoom Rate Up/Down defines how much to zoom with every zoom step.

Tip: You can adjust the Icon Size
since OTMaster 6!

101

dtl otmaster : PreFerences

— Foreground Character
— Background Character

There are two sets of options for Foreground Character and for
Background Character the latter of which has a few options less:

Checkboxes in the Display Options area define which information the
Glyph Editor will visualize by default:
Image shows filled shapes.
Outline adds a colored outline.
Points shows on-curve points.
Point Indices shows points’ index numbers.
Contour Indices shows contours’ index numbers.
Baseline shows the baseline.
hhea asc/dsc are the hhea table’s ascender/descender heights.
typo asc/dsc are the OS/2 table’s sTypoAscender/sTypoDescender height.
win asc/dsc are the OS/2 table’s usWinAscent/usWinDescent heights.
Hints shows a glyph’s hints.
Winding Fill chooses the non-zero winding rule over the (default)
even-odd rule for determining glyphs’ fill.
v-Guidelines and h-Guidelines display the respective guidelines.
Grid shows the grid.
2nd Options helps toggle between two sets of Colors.
Large lsb/rsb displays sidebearings by full-size vertical lines to the left
and right of a glyph. Normally, and in best Ikarus tradition, sidebearings are
indicated by small stubs sitting on the baseline.

In the Colors area you may adjust the colors of these pieces of information.

102

dtl otmaster : PreFerences

— Autohinting
These options determine how autohinting will work:

In the Recognition of Stems area you may choose whether or not to
recognize Straight Stems, Curve Stems and Diagonal Stems.
Tolerance for Recognition of Straight Stems allows recognizing stems
even if they are not exactly horizontal or vertical.
Minimum Length of Straight Stems defines how long straight segments
need to be to be considered as being part of stems.
Base Size is the font’s upm size – the former two values relate to it.

The Key Characters area offers an easy way to define alignment zones
by referring to glyphs from which these values are to be derived. Glyphs
are identified either by Unicode codepoint or by gid. The baseline value
usually is zero and does not need to be extracted from any glyph.

By default, OTMaster requires that you autohint glyphs individually in the
Glyph Editor. This is to make sure that existing hinting will not get lost.
However, you may choose to Autohint all unhinted glyphs when saving
font.

103

dtl otmaster : PreFerences

And finally there are the ...

— Shortcuts
Here you may check, or redefine, which shortcuts are associated with which
of OTMaster’s actions:

Each action has a number, a name, a transcription of the shortcut
(Portable) and a visualization of it (Native).

To adjust an action’s shortcut, click into a cell in the Portable column and
edit the cell’s text. An action may be associated with more than one shortcut.
In this case, a semicolon serves as a separator, as can be seen with action 15,
‘Zoom In’, which has two shortcuts enumerated as ‘u; +’.

104

dtl otmaster : sHortcUts

Function Mac osx Windows Linux

 Main Dialog

File Menu
Open cmd+O ctrl+O ctrl+O
Close cmd+E ctrl+E ctrl+E
Close All cmd+shift+E ctrl+shift+E ctrl+shift+E
Save cmd+S ctrl+S ctrl+S
Save As ... cmd+shift+S ctrl+shift+S ctrl+shift+S
Save All cmd+alt+S ctrl+alt+S ctrl+alt+S
Preferences cmd+ , ctrl+ , ctrl+ ,
Messages cmd+L ctrl+L ctrl+L
Clipboard cmd+alt+V ctrl+alt+V ctrl+alt+V
Quit cmd+Q ctrl+Q

Edit Menu
Cut cmd+X ctrl+X ctrl+X
Copy cmd+C ctrl+C ctrl+C
Paste cmd+V ctrl+V ctrl+V
Grow cmd+G ctrl+G ctrl+G

View Menu
Number as Decimal 0 >D 0 >D 0 >D
Number as Hexadecimal 0 >X 0 >X 0 >X
Number as Composite 0 >C 0 >C 0 >C
Number as Appropriate 0 > 0 0 > 0 0 > 0
Data as Text cmd+T ctrl+T ctrl+T

Table Overview
File Above cmd+u ctrl+u ctrl+u
File Below cmd+t ctrl+t ctrl+t

Application-wide
Close Window cmd+W

Info: If there is a + inbetween two
keys, hold the first key and press
the second key. If there is a > inbe-
tween two keys, press the first
key and then press the second key
shortly thereafter.

105

dtl otmaster : sHortcUts

Function Mac osx Windows Linux

 Glyph Editor

File
Import cmd+alt+shift+O ctrl+alt+shift+O ctrl+alt+shift+O
Export cmd+alt+shift+S ctrl+alt+shift+S ctrl+alt+shift+S
Print cmd+P ctrl+P ctrl+P

Edit / Selection
Revert to Saved cmd+alt+Z ctrl+alt+Z ctrl+alt+Z
Undo cmd+Z ctrl+Z ctrl+Z
Redo cmd+shift+Z ctrl+Y ctrl+shift+Z
Delete backspace or del backspace or del backspace or del
Cut cmd+X ctrl+X ctrl+X
Copy cmd+C ctrl+C ctrl+C
Paste cmd+V ctrl+V ctrl+V
Paste & Shift cmd+shift+V ctrl+shift+V ctrl+shift+V
Previous alt+T ctrl+T ctrl+T
Next alt+U ctrl+U ctrl+U
New Character cmd+N ctrl+N ctrl+N
Duplicate Character cmd+shift+C ctrl+shift+C ctrl+shift+C
Swap Background
 Character / / /
Select All / Deselect All cmd+A ctrl+A ctrl+A

Selection Levels
Select Points 1 1 1
Select Contours 2 2 2
Select Groups 3 3 3
Select Character 4 4 4

View
Zoom In U U U
Zoom Out D D D
Reset (to default size) F5 or cmd+R F5 or ctrl+R F5 or ctrl+R

Info: If there is a + inbetween two
keys, hold the first key and press
the second key. If there is a > inbe-
tween two keys, press the first
key and then press the second key
shortly thereafter.

106

dtl otmaster : sHortcUts

Function Mac osx Windows Linux

Tools
Zoom cmd+U or cmd++ ctrl+U or ctrl++ ctrl+U or ctrl++
Scroll By Hand cmd+space ctrl+space ctrl+space
Measure = or enter = or enter = or enter
Grid # # #
Guidelines | | |
Adjust to Guidelines G G G
Scale S S S
Scale Intelligent shift+S shift+S shift+S
Rotate R R R
Affine Transformation A A A
Italization cmd+I ctrl+I ctrl+I
Mirror and Fold F F F
Hidden Lines H >L H>L H>L
Contouring C >N C >N C >N
T-Disconnector T T T
X-Disconnector X X X
I-Disconnector I I I
Improve ... $ $ $
Rounding O O O
Stem Adjustment cmd+B ctrl+B ctrl+B
Sense of Rotation . . .
Sequence of Points
 and Contours : : :
Merge M M M
Interpolation % % %
Autohint ! ! !
Review Changes ? ? ?
Contruction K K K
Quick Mode Q Q Q
Digitize ^ ^ ^
Shift < < <
Shift Smooth > > >
Background Glyph B B B
Channelize C > H C >H C >H
Crop C > R C >R C >R

Info: If there is a + inbetween two
keys, hold the first key and press
the second key. If there is a > inbe-
tween two keys, press the first
key and then press the second key
shortly thereafter.

107

dtl otmaster : sHortcUts

Function Mac osx Windows Linux

Display Options
Image ,> I ,>I , >I
Outline ,>O ,>O ,>O
Points ,>P ,>P ,>P
Point Indices ,>N ,>N ,>N
Contour Indices ,>M ,>M ,>M
Baseline ,>0 ,>0	 ,>0
hhea asc/dsc ,>1 ,>1 , >1
type asc/dsc ,>2 ,>2 ,>2
win asc/dsc ,>3 ,>3 ,>3
Inflections ,>S ,>S ,>S
Flat Curves ,>L ,>L ,>L
H-Stems ,>H ,>H ,>H
V-Stems ,>V ,>V ,>V
D-Stems ,>D ,>D ,>D
C-Stems ,>C ,>C ,>C
Hints ,>E ,>E ,>E
H-Guidelines ,>X ,>X ,>X
V-Guidelines ,>Y ,>Y ,>Y
G-Guidelines ,>Z ,>Z ,>Z
Grid ,>G ,>G ,>G
Target Image ,>T ,>T ,>T
Target Outline ,>U ,>U ,>U
Background ,>B ,>B ,>B
Winding Fill ,>F ,>F ,>F
2nd Option + + +

Info: If there is a + inbetween two
keys, hold the first key and press
the second key. If there is a > inbe-
tween two keys, press the first
key and then press the second key
shortly thereafter.

108

acknoWledGements

 dtl OTMaster Manual
 Edition 6.0.0/2016; reflects dtl OTMaster version 6.3
 © 2016 Dutch Type Library and urw++ Design & Development

Text,
Design Karsten Lücke
Typeset in dtl Argo, dtl Haarlemmer and dtl Haarlemmer Sans

Thanks to Microsoft for allowing the inclusion of the OpenType specs

 Dutch Type Library
 Zwaenenstede 49
 5221 kc ’s-Hertogenbosch
 The Netherlands
phone + 31 (0)73 614 95 36
fax + 31 (0)73 613 98 23
e-mail info@dutchtypelibrary.com
website www.dtl.nl and www.fonttools.org

 urw++ Design & Development GmbH
 Poppenbütteler Bogen 36
 22399 Hamburg
 Germany
phone + 49 (0)40 60 60 52 28
fax + 49 (0)40 60 60 51 11
e-mail info@urwpp.de
website www.urwpp.de

The third party product names used
in the dtl OTMaster manual are
for identification purposes only. All
trademarks and registered trademarks
are the property of their respective
owners. The following trademarks
may or may not be marked in this
manual:

OpenType is either a registered
trademark or trademark of Microsoft
Corporation in the United States
and/or other countries.

PostScript is a registered trademark of
Adobe Systems Incorporated.

TrueType is a trademark of Apple
Computer, Incorporated.

Adobe is a registered trademark of
Adobe Systems Incorporated.

Apple and Macintosh are registered
trademarks of Apple Computer,
Incorporated.

Microsoft and Windows are either
registered trademarks or trademarks
of Microsoft Corporation in the
United States and/or other countries.

Other company, product, and service
names occasionally or incidentally
mentioned in this manual may be
trademarks or service marks of others.

mailto:info@dutchtypelibrary.com
http://www.dtl.nl
http://www.fonttools.org
mailto:info@urwpp.de
http://www.urwpp.de

